一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。
-
-
-
-
-
5.
(2024高二上·平江期末)
在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长的一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为( )
A . 25.5尺
B . 34.5尺
C . 37.5尺
D . 96尺
-
A . 长轴长相等
B . 短轴长相等
C . 离心率相等
D . 焦距相等
-
-
8.
(2024高二上·平江期末)
已知椭圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ey%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的左、右焦点分别是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
是椭圆上的动点,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EI%3C%2Fmi%3E%3C%2Fmath%3E)
和
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EG%3C%2Fmi%3E%3C%2Fmath%3E)
分别是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
的内心和重心,若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EI%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EG%3C%2Fmi%3E%3C%2Fmath%3E)
与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmath%3E)
轴平行,则椭圆的离心率为( )
二、多选题:本题共4小题,共20分。在每小题给出的选项中,有多项符合题目要求。
-
-
A . 过点
且在
轴,
轴截距相等的直线方程为
B . 直线
在
轴的截距是
C . 直线
的倾斜角为
D . 过点
且倾斜角为
的直线方程为
-
A . 若
, 则
,
的夹角是锐角
B . 若
,
, 则
C . 若
, 则
D . 若
,
,
, 则
,
,
可以作为空间中的一组基底
-
三、填空题:本题共4小题,每小题5分,共20分。
-
-
-
-
16.
(2024高二上·平江期末)
正四棱锥
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
, 底面四边形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
为边长为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
的正方形,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsqrt%3E%3Cmn%3E5%3C%2Fmn%3E%3C%2Fmsqrt%3E%3C%2Fmath%3E)
, 其内切球为球
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EG%3C%2Fmi%3E%3C%2Fmath%3E)
, 平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3E%CE%B1%3C%2Fmi%3E%3C%2Fmath%3E)
过
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
与棱
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
分别交于点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EN%3C%2Fmi%3E%3C%2Fmath%3E)
, 且与平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
所成二面角为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E30%3C%2Fmn%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3C%2Fmath%3E)
, 则平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3E%CE%B1%3C%2Fmi%3E%3C%2Fmath%3E)
截球
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EG%3C%2Fmi%3E%3C%2Fmath%3E)
所得的图形的面积为
.
四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。
-
-
(1)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%29%3C%2Fmo%3E%3Cmo%3E%2F%3C%2Fmo%3E%3Cmo%3E%2F%3C%2Fmo%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
, 求实数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ek%3C%2Fmi%3E%3C%2Fmath%3E)
的值;
-
(2)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%29%3C%2Fmo%3E%3Cmo%3E%E2%8A%A5%3C%2Fmo%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmover+accent%3D%22false%22%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%E2%83%97%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
, 求实数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ek%3C%2Fmi%3E%3C%2Fmath%3E)
的值.
-
-
(1)
求证:直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3El%3C%2Fmi%3E%3C%2Fmath%3E)
恒过定点;
-
-
-
(1)
求证:数列
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmath%3E)
为等比数列.
-
(2)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmo%3E%E2%8B%AF%3C%2Fmo%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmn%3E100%3C%2Fmn%3E%3C%2Fmath%3E)
, 求满足条件的最大整数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3En%3C%2Fmi%3E%3C%2Fmath%3E)
.
-
-
(1)
判断直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
与平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
的位置关系,并证明;
-
-
-
-
(2)
当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Em%3C%2Fmi%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
时,求证:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
.
-
-
(1)
求双曲线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的方程;
-
(2)
经过点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
的直线与双曲线的右支交于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
两点,与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ey%3C%2Fmi%3E%3C%2Fmath%3E)
轴交于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
点,点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
关于原点的对称点为点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EQ%3C%2Fmi%3E%3C%2Fmath%3E)
, 求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3EQ%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
的面积的取值范围.