当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河北省2024年中考数学模拟试卷(三)

更新时间:2024-03-24 浏览次数:14 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 20. (2023·衡水模拟) 如图,将数轴上与6两点间的线段六等分,这五个等分点所对应的数依次为

      

    1. (1)
    2. (2) 计算:
  • 21. (2023·衡水模拟) 如图,公园里有两块边长分别为a,b的正方形区域A、B,其中阴影部分M为雕塑区,面积为m,其他部分种植花草.

      

    1. (1) 用含a,b,m的代数式表示种植花草的面积
    2. (2) 若正方形A的一个顶点恰为正方形B的中心,a比b大20,M的面积是A的 , 求a的值.
  • 22. (2023·石家庄月考) 某乒乓球俱乐部有名男队员和名女队员可参加对外比赛,其中有名男队员和名女队员使用左手打球.现计划用这名队员组成混合双打组合.(以下简称混双组合:就是由一名男队员和一名女队员组成)
    1. (1) 可以有多少种不同的混双组合?如果从这些组合中任选个参加比赛,那么选中的组合中正好有一名左手队员和一名右手队员的概率是多少?
    2. (2) 实际运作中,通过各种组合之间的比赛,最终确定了个组合,其中有一个组合正好是男号与女号组成的(我们称为“一号组合”).如果这三个组合通过抓阉(jiu)方式决定哪一组由张岩教练指导,直接写出“一号组合”选中张岩教练的概率是多少?
  • 23. (2023九下·石家庄模拟) 发现:当两个不同的正整数同为偶数或奇数时,这两个数之和与这两个数之差的平方差一定能被4整除,且这两个数的积可以表示为两个正整数的平方差.

    验证:如,能被4整除,请把3与1的积写成两个正整数的平方差;

    探究:设“发现”中两个正整数分别为m,n,请论证“发现”中的结论正确.

  • 24. (2023·张家口模拟) 随着 技术的发展,人们对各类 产品的使用充满期待.某公司计划在某地区销售第一款 产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第 为正整数)个销售周期每台的销售价格为 元, 之间满足如图所示的一次函数关系.

    1. (1) 求 之间的关系式;
    2. (2) 设该产品在第 个销售周期的销售数量为 (万台), 的关系可用 来描述。根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?
  • 25. (2023·丰南模拟) 建大棚种植蔬菜是农民致富的一条好途径.经市场调查发现:搭建一个面积为为整数)公顷的大棚,前期准备所需总费用由建设费用和内部设备费用两部分组成,其中建设费用与成正比例,内部设备费用与成正比例,部分数据如下:

    大棚面积/公顷

    3

    8

    前期准备所需总费用/万元

    21

    134

    1. (1) 求前期准备所需总费用之间的函数关系式.
    2. (2) 若种植1公顷蔬菜需种子、化肥、农药的开支0.4万元,收获1公顷的蔬菜年均可卖9.4万元.设当年收获蔬菜的总收益(扣除修建和种植成本)为万元,写出之间的函数关系式.
    3. (3) 求种植的面积为多少公顷时,当年收获蔬菜的总收益最大,最大值为多少?
  • 26. (2023·保定模拟) 如图,矩形ABCD中,AB=4,AD=3,点E在射线CB上运动(可与点C重合),DE的中点为G,将EG绕点E顺时针旋转90°得到EF,再以ED,EF为一组邻边作矩形DEFH.

    1. (1) 当点E为BC的中点时,点F到直线BC的距离为
    2. (2) 当点F落在矩形ABCD的边(或边所在的直线)上时,求CE的长;
    3. (3) 点E在线段BC(可与点B,C重合)上运动时,直接写出线段CF的最小值.

微信扫码预览、分享更方便

试卷信息