一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。
-
-
A . 10
B . 14
C . 15
D . 30
-
-
-
-
-
7.
(2024高二下·杭州期中)
我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E.%3C%2Fmo%3E%3C%2Fmath%3E)
”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E.%3C%2Fmo%3E%3C%2Fmath%3E)
我们从这个商标
![](//tikupic.21cnjy.com/2024/05/21/82/aa/82aac1074053c24637852883fc16eb25.png)
中抽象出一个图象如图,其对应的函数可能是
( )
![](//tikupic.21cnjy.com/2024/05/21/49/e1/49e1c669bc2929ccb3f25d913ad12d35.png)
-
8.
(2024高二下·杭州期中)
已知抛物线
C:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ey%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ep%3C%2Fmi%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ep%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的焦点
F到准线的距离为4,过点
F的直线与抛物线交于
A ,
B两点,
M为线段
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
的中点,若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmath%3E)
, 则点
M到
y轴的距离为( )
A . 4
B . 6
C . 7
D . 8
二、多选题:本题共3小题,共18分。在每小题给出的选项中,有多项符合题目要求。
三、填空题:本题共3小题,每小题5分,共15分。
-
-
-
14.
(2024高二下·杭州期中)
古希腊数学家阿波罗尼斯
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%28%3C%2Fmo%3E%3C%2Fmath%3E)
约公元前
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E262%3C%2Fmn%3E%3Cmi+mathvariant%3D%22normal%22%3E%EF%BD%9E%3C%2Fmi%3E%3C%2Fmath%3E)
公元前
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E190%3C%2Fmn%3E%3C%2Fmath%3E)
年
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的著作
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3E%E3%80%8A%3C%2Fmi%3E%3C%2Fmath%3E)
圆锥曲线论
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3E%E3%80%8B%3C%2Fmi%3E%3C%2Fmath%3E)
是古代数学的重要成果其中有这样一个结论:平面内与两点距离的比为常数
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3E%CE%BB%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3E%CE%BB%3C%2Fmi%3E%3Cmo%3E%E2%89%A0%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的点的轨迹是圆,后人称这个圆为阿波罗尼斯圆,已知点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EO%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmn%3E0%2C0%3C%2Fmn%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmn%3E3%2C0%3C%2Fmn%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
, 动点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ey%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
满足
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EO%3C%2Fmi%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
, 则点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
的轨迹与圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ey%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmath%3E)
的公切线的条数为
.
四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。
-
15.
(2024高二下·杭州期中)
在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
中,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Es%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3Ei%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3En%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsqrt%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsqrt%3E%3Cmi+mathvariant%3D%22normal%22%3Es%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3Ei%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3En%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsqrt%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsqrt%3E%3Cmo%3E.%3C%2Fmo%3E%3C%2Fmath%3E)
再从条件
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3E%E2%91%A0%3C%2Fmi%3E%3C%2Fmath%3E)
、条件
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3E%E2%91%A1%3C%2Fmi%3E%3C%2Fmath%3E)
、条件
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3E%E2%91%A2%3C%2Fmi%3E%3C%2Fmath%3E)
这三个条件中选择一个作为已知,使
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
存在且唯一确定,并解决下面的问题:
条件①:
;
条件②:
;
条件③:
.
-
(1)
求角
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
的大小;
-
(2)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的面积.
-
-
(1)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的解析式;
-
(2)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmath%3E)
处的切线方程;
-
(3)
若方程
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ek%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
有且只有一个实数根,求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ek%3C%2Fmi%3E%3C%2Fmath%3E)
的取值范围.
-
-
-
(2)
设
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmn%3E++%EF%BC%8C+%3C%2Fmn%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmtext%3EN%3C%2Fmtext%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E%2A%3C%2Fmtext%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
, 证明:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmtext%3E%E2%8B%AF%3C%2Fmtext%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
.
-
-
(1)
求证:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EM%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EN%3C%2Fmi%3E%3Cmo%3E%2F%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3E%E2%80%8B%3C%2Fmi%3E%3Cmo%3E%2F%3C%2Fmo%3E%3C%2Fmath%3E)
平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
;
-
(2)
求证:平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3Cmo%3E%E2%8A%A5%3C%2Fmo%3E%3C%2Fmath%3E)
平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
;
-
(3)
求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EC%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
与平面
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmi+mathvariant%3D%22normal%22%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
所成角的正弦值.
-
19.
(2024高二下·杭州期中)
已知椭圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EE%3C%2Fmi%3E%3Cmo%3E%EF%BC%9A%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Ey%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsup%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Ea%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmi+mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3Cmo%3E%26gt%3B%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmath%3E)
的左、右焦点分别为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, 左、右顶点分别为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, 若以
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
为圆心,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmath%3E)
为半径的圆与以
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
为圆心,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmath%3E)
为半径的圆相交于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
两点,若椭圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
经过
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
两点,且直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3Cmsub%3E%3Cmrow%3E%3Cmi+mathvariant%3D%22normal%22%3EA%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
的斜率之积为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
.
-
(1)
求椭圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
的方程;
-
(2)
点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
是直线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3El%3C%2Fmi%3E%3C%2Fmath%3E)
:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3Ex%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmath%3E)
上一动点,过点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
作椭圆
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
的两条切线,切点分别为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EM%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi+mathvariant%3D%22normal%22%3EN%3C%2Fmi%3E%3C%2Fmath%3E)
.
①求证直线
恒过定点,并求出此定点;
②求
面积的最小值.