当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

重庆2024年中考数学模拟预测试卷(六)

更新时间:2024-07-01 浏览次数:39 类型:中考模拟
一、选择题(共10小题,满分40分,每小题4分)
二、填空题(共8小题,满分32分,每小题4分)
三、解答题(共8小题,满分78分)
    1. (1) 4x(x﹣2y)﹣(2x+y)(2x﹣y);
    2. (2)
  • 20. (2024·重庆市模拟) 如图,在平行四边形ABCD中,AE平分∠BAD,交对角线BD于点E
    1. (1) 用尺规完成以下基本作图:作∠BCD的平分线,交对角线BD于点F;(不写作法和证明,保留作图痕迹)
    2. (2) 在(1)所作的图形中,求证:BE=DF.(请补全下面的证明过程,除题目给的字母外,不添加其它字母或者符号)

      证明:∵四边形ABCD是平行四边形,

      ∴AB=CD,        ▲        

      ∴∠ABE=∠CDF.

      ∵AE、CF分别平分∠BAD和∠DCB,

      ∴∠BAE=∠BAD,        ▲        

      ∵四边形ABCD是平行四边形,

              ▲        

      ∴∠BAE=∠DCF.

      在△ABE与△CDF中

      ∴△ABE≌△CDF(ASA)

      ∴BE=DF

  • 21. (2024·重庆市模拟) 猜灯谜是我国独有的富有民族风格的一种文娱活动形式.某校开展了猜灯谜知识竞答活动,从七年级和八年级各随机抽取20名学生的竞答成绩(单位:分),进行整理、描述和分析(比赛成绩用x表示,共分成4组:A.90≤x≤100,B.80≤x<90,C.70≤x<80,D.60≤x<70).下面给出了部分信息:

    七年级学生B组的竞答成绩为:86,81,83,84,82,83,86,84.八年级被抽取学生的竞答成绩为:83,60,66,62,68,83,71,92,90,76,91,94,83,75,84,83,77,90,91,81.

    七八年级抽取的竞答成绩统计表

    年级

    七年级

    八年级

    平均数

    80

    80

    中位数

    a

    83

    众数

    82

    b

    请根据以上信息,解答下列问题:

    1. (1) 填空:a=.b=,m=
    2. (2) 根据以上数据,你认为哪个年级学生的竞答成绩更好?请说明理由(写出一条理由即可);
    3. (3) 该校七、八年级学生共有1200人,请你估计该校七、八年级学生中竞答成绩不低于90分的有多少人?
  • 22. (2024·重庆市模拟) 宋代是茶文化发展的第二个高峰,宋代的饮茶主要以点茶为主,煎茶为辅,在点茶的基础上升华为斗茶、分茶和茶百戏.某网店销售两种点茶器具套装,已知甲种点茶器具套装的单价比乙种点茶器具套装的单价少30元,花1480元购进甲种点茶器具套装的数量是花890元购进乙种点茶器具套装数量的2倍.

    1. (1) 求甲、乙两种点茶器具套装的单价.
    2. (2) 某学校社团开展茶文化学习活动,从该网店购进甲、乙两种点茶器具套装共花了2252元,甲种点茶器具套装比乙种点茶器具套装多2套,则学校购进甲、乙两种点茶器具套装各多少套?
  • 23. (2024·重庆市模拟) 如图,矩形ABCD中,AB=4,BC=3.动点P从点A出发,沿着折线A→B→C方向运动,到达点C时停止运动.设点P运动的路程为x(其中0<x<7),连接CP,记△ACP的面积为y,请解答下列问题:

    1. (1)  直接写出y关于x的函数关系式,并注明自变量x的取值范围;
    2. (2) 在给定的平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质;
  • 24. (2024·重庆市模拟) 在公园里,同一平面内的五处景点的道路分布如图所示,经测量,点D、E均在点C的正北方向且CE=900米,点B在点C的正西方向,且BC米,点B在点A的南偏东60°方向且AB=600米,点D在点A的东北方向.(参考数据:

    1. (1) 求道路AD的长度(结果保留根号);
    2. (2) 若甲从A点出发沿A﹣D﹣E的路径去点E,与此同时乙从点B出发,沿B﹣A﹣E的路径去点E,在两人速度相同的情况下谁先到达点E?(结果精确到十分位)
  • 25. (2024·重庆市模拟) 如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C.

    1. (1) 求抛物线的函数表达式;
    2. (2) 线段DE位于第四象限,且在线段BC上移动,EF∥y轴交抛物线于点F,连接DF.若DE , 求△DEF的面积的最大值,及此时点E的坐标;
    3. (3) 将该抛物线沿射线CB方向平移,使得新抛物线经过(2)中△DEF的面积取得最大值时对应的点E处,且与直线BC相交于另一点K.点P为新抛物线上的一个动点,当∠PEK和∠PKE中,其中一个角与∠ACB相等时,直接写出所有符合条件的点P的坐标,并写出其中一个点的求解过程.
  • 26. (2024·重庆市模拟) 如图,在△ABC中,∠BAC=90°,AB=AC,点D为AC一点,连接BD.

    1. (1) 如图1,若CD=4 , ∠ABD=15°,求AD的长;
    2. (2) 如图2,过点A作AE⊥BD于点E,交BC于点M,AG⊥BC于点G,交BD于点N,求证:BM=CM+MN;
    3. (3) 如图3,将△ABD沿BD翻折至△BDE处,在AC上取点F,连接BF,过点E作EH⊥BF交AC于点G,GE交BF于点H,连接AH,若GE:BF=:2,AB=2 , 求AH的最小值.

微信扫码预览、分享更方便

试卷信息