一、选择题。(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)
-
A . 等边三角形
B . 平行四边形
C . 直角三角形
D . 等腰梯形
-
-
-
A . 若
, 则
是菱形
B . 若
, 则
是正方形
C . 若
, 则
是矩形
D . 若
, 则
是正方形
-
-
6.
(2024八下·临湘期中)
如图,分别以线段AB的两端点A,B为圆心,大于
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E)
AB长为半径画弧,在线段AB的两侧分别交于点E,F,作直线EF交AB于点O.在直线EF上任取一点P(不与O重合),连接PA,PB,则下列结论不一定成立的是( )
![](//tikupic.21cnjy.com/2021/12/28/89/e5/89e553febf0b8c4557d5e3b9edbbf4ab.png)
-
-
A . 6
B . 8
C . 10
D . 12
-
-
10.
(2024八下·临湘期中)
如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为( )
![](//tikupic.21cnjy.com/2022/04/11/eb/6e/eb6ec0aac0dec245651bc23d65f4583b.png)
二、填空题。(本题共8小题,每小题3分,满分24分)
-
-
12.
(2024八下·临湘期中)
如图,禁令标志是交通标志中的一种,是对车辆加以禁止或限制的标志,如禁止通行、禁止停车、禁止左转弯、禁止鸣喇叭、限制速度、限制重量等。如图,该禁令标志的内角和是
。
![](//tikupic.21cnjy.com/2024/06/05/cb/1f/cb1f21dba6029aec2c22c7776bb12568.png)
-
-
-
-
-
-
18.
(2024八下·临湘期中)
如图:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
是边长为3
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ec%3C%2Fmtext%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmath%3E)
的等边三角形动点
P、
Q同时从
A、
B两点出发,分别沿
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
、
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
方向匀速移动,它们的速度都是1
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3Ec%3C%2Fmtext%3E%3Cmtext%3Em%3C%2Fmtext%3E%3Cmtext%3E%2F%3C%2Fmtext%3E%3Cmtext%3Es%3C%2Fmtext%3E%3C%2Fmath%3E)
, 当点
P到达
B时,
P、
Q两点停止运动,当点
P到达
B时,
P、
Q两点停止运动。设点
P运动的时间为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Et%3C%2Fmi%3E%3Cmn%3E%28%3C%2Fmn%3E%3Cmi%3Es%3C%2Fmi%3E%3Cmn%3E%29%3C%2Fmn%3E%3C%2Fmath%3E)
。当
t为
时,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EQ%3C%2Fmi%3E%3C%2Fmath%3E)
是直角三角形。
![](//tikupic.21cnjy.com/2024/06/05/95/d4/95d40b664f7f480edadea651ebdc6295_128x104.png)
三、解答题。(本题共8小题,满分66分,解答应写出文字说明,证明过程或演算步骤)
-
-
-
(1)
求证:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
是直角三角形;
-
(2)
求四边形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
的面积.
-
-
-
(2)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
, 试判断△ABC 的形状,并说明理由.
-
-
(1)
四边形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
是什么样的四边形?说明理由。
-
(2)
求四边形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
的两条对角线的长度。
-
(3)
求四边形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
的面积。
-
23.
(2024八下·临湘期中)
如图,一艘轮船航行到
B处时,测得小岛
A在船的北偏东
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3C%2Fmath%3E)
的方向,轮船从
B处继续向正东方向航行20海里到达
C处时,测得小岛
A在船的北偏东
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3C%2Fmath%3E)
的方向。(参考数据:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsqrt%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsqrt%3E%3Cmo%3E%E2%89%88%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E.%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
)
![](//tikupic.21cnjy.com/2024/06/05/fb/8a/fb8aabe9d55ddbf6347366f25c5da765.png)
-
(1)
若小岛
A到这艘轮船航行路线
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的距离是
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
, 求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
的长;
-
(2)
已知在小岛周围17海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?
-
-
(1)
求证:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
垂直平分
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
。
-
-
25.
(2024八下·临湘期中)
如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
![](//tikupic.21cnjy.com/c6/8d/c68d79db2c49f932773c10cee15f87f8.png)
-
-
(2)
当点O运动到何处时,四边形AECF是矩形并证明你的结论;
-
(3)
若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.
-
-
(1)
【问题初探】
爱动脑筋的小悦发现,通过证明两个三角形全等,可以得到结论.请你写出线段
、
、
之间的数量关系,并说明理由;
-
-
(3)
【问题解决】
如图3,在(2)的条件下,当菱形的边长为8,点P运动至与A点距离恰好为7的位置,且
旋转至
时,
的长度为。