一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.)
-
-
2.
(2024高二下·广东期中)
甲、乙、丙三个同学报名参加学校运动会中设立的跳高、铅球、跳远、100米比赛,每人限报一项,共有多少种不同的报名方法( )
A . 12
B . 24
C . 64
D . 81
-
A . 9.6%
B . 10.4%
C . 80%
D . 99.2%
-
A . 80
B . 40
C . 10
D .
-
-
6.
(2024高二下·广东期中)
某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是10万斤,每种植1斤藕,成本增加1元.销售额
(单位:万元)与莲藕种植量
(单位:万斤)满足
(
为常数),若种植3万斤,利润是
万元,则要使销售利润最大,每年需种植莲藕( )
A . 7万斤
B . 8万斤
C . 9万斤
D . 10万斤
-
7.
(2024高二下·广东期中)
英国数学家贝叶斯在概率论研究方面成就显著,根据贝叶斯统计理论,随机事件A,B存在如下关系:
.若某地区一种疾病的患病率是0.05,现有一种试剂可以检验被检者是否患病.已知该试剂的准确率为95%,即在被检验者患病的前提下用该试剂检测,有95%的可能呈现阳性;该试剂的误报率为0.5%,即在被检验者未患病的情况下用该试剂检测,有0.5%的可能会误报阳性.现随机抽取该地区的一个被检验者,已知检验结果呈现阳性,则此人患病的概率为( )
-
8.
(2024高二下·广东期中)
某市举行乡村振兴汇报会,六个获奖单位的负责人甲、乙、丙等六人分别上台发言,其中负责人甲、乙发言顺序必须相邻,丙不能在第一个与最后一个发言,则不同的安排方法共有( )
A . 240种
B . 120种
C . 156种
D . 144种
二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分.)
三、填空题(本大题共3小题,每小题5分,共15分.请把答案填在答题卡的相应位置上.)
四、解答题(本大题共5小题,第15题13分,16、17题各15分,18、19题各17分,共77分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效.)
-
-
-
(2)
求
的值;
-
(3)
求
的值;
-
-
17.
(2024高二下·广东期中)
甲、乙两位同学到校学生会竞聘同一岗位,进入最后面试环节.具体面试方案如下:甲、乙各自从5个问题中随机抽取3个问题,已知这5个问题中,甲能正确回答其中3个问题,而乙能正确回答每个问题的概率均为
, 甲、乙对每个问题的回答都相互独立,互不影响.
(1)设甲答对的问题个数为随机变量 , 求的分布列、数学期望和方差;
(2)请从数学期望和方差的角度分析,甲、乙两位同学,哪位同学竞聘成功的可能性更大?
-
18.
(2024高二下·广东期中)
在混放在一起的6件不同的产品中,有2件次品,4件正品.现需要通过检测将其区分,每次随机抽取一件进行检测,检测后不放回,直到检测出2件次品或者检测出4件正品时检测结束.
-
(1)
若第二次抽到的是次品且第三次抽到的是正品,求共有多少种不同的抽法;
-
(2)
已知每检测一件产品需要100元费用,求检测结束时检测费用为400元的抽法有多少种?(要求:解答过程要有必要的说明和步骤)
-
-
(1)
讨论
的单调性;
-
(2)
当
时,证明:不等式
恒成立.