请解答下列问题:
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为8m,计算DE的长.
项目主题:守护生命,“数”说安全.
项目背景:随着社会的发展,安全问题变得日益重要.某校为了提高学生的安全意识,开展以“守护生命,'数'说安全”为主题的项目式学习活动.创新小组通过考察测量、模拟探究和成果迁移等环节,开展地下弯道对通行车辆长度的限制研究.
任务一:考察测量
(1)如图1,创新小组所选取弯道的内、外侧均为直角,道路宽均为 , 则 ;
任务二:模拟探究
如果汽车在行驶中与弯道内、外侧均无接触,则可安全通过.
(2)创新小组用线段模拟汽车通过宽度相同的直角弯道,探究发现:
①当时(如图1),线段能通过直角弯道;
②当时,必然存在线段的中点E与点B重合的情况,线段恰好不能通过直角弯道(如图2).此时,的度数是 ;
③当时,线段不能通过直角弯道.
(3)如图3,创新小组用矩形模拟汽车通过宽均为的直角弯道,发现当的中点E与点B重合,且时,矩形恰好不能通过该弯道.若 , 且矩形能通过该直角弯道,求a的最大整数值.
任务三:成果迁移
(4)如图4,某弯道外侧形状可近似看成反比例函数的图象,其对称轴交图象于点A.弯道内侧的顶点B在射线上,两边分别与x轴,y轴平行, . 创新小组探究发现通过该弯道的原理与通过直角弯道类似.有一辆长为 , 宽为的汽车需要安全通过该弯道,则b的最大整数值为 . (参考数据:)
(1)如图1,在等腰直角中,点D是斜边上任意一点,在的右侧作等腰直角 , 使 , , 连接 , 则和的数量关系为 ;
【拓展延伸】
(2)如图2,在等腰中, , 点D是边上任意一点(不与点B,C重合),在的右侧作等腰 , 使 , , 连接 , 则(1)中的结论是否仍然成立,并说明理由;
【归纳应用】
(3)在(2)的条件下,若 , , 点D是射线上任意一点,请直接写出当时的长.