甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
A. B.
C. D.
(1)求y与x的函数关系式并写出自变量x的取值范围;
(2)如果所围成的花圃的面积为63平方米,试求宽AB的长;
(3)按题目的设计要求, (填“能”或“不能”)围成面积为80平方米的花圃.
①②
【问题探究】李老师发现有这样一种解法,很适合解此类方程
如:解方程 .
解:原方程可变形,得 . , , .
直接开平方并整理,得 , .
我们称这种解法为“平均数法”.
解:原方程可变形,得
.
, .
直接开平方并整理,得 , .
上述过程中的“▱”,“○”,“☆”,“”表示的数分别为______,______,______,______.
①
②
【定义】四边成比例,且四角分别相等的两个四边形叫做相似四边形.
【初步思考】
(1)小明根据探索三角形相似的条件所获得的经验,考虑可以从定义出发逐步弱化条件探究四边形相似的条件.他考虑到“四角分别相等的两个四边形相似”可以举出反例“矩形”,“四边成比例的两个四边形相似”可以举出反例______.所以四边形相似的条件必须再添加条件,于是,可以从“四边成比例,且一角对应相等的两个四边形相似”,“三边成比例,且两角分别相等的两个四边形相似”,“两边成比例,且三角分别相等的两个四边形相似”来探究.
【深入探究】
(2)学习小组一致认为,“四边成比例,且一角对应相等的两个四边形相似”是真命题,请结合图形完成证明.
已知:四边形和四边形中, , .
求证:四边形四边形 . 证明:
(3)对于“三边成比例,且两角分别相等的两个四边形相似”,学习小组得到如下的四个命题:
①“三边成比例,两邻角分别相等且只有一角为其中两边的夹角的两个四边形相似”;
②“三边成比例,两邻角分别相等且都不是其中两边的夹角的两个四边形相似”;
③“三边成比例及其两夹角分别相等的两个四边形相似”;
④“三边成比例,两对角分别相等的两个四边形相似”.
其中真命题是______.(填写所有真命题的序号)
(4)请你完成“两边成比例,且三角分别相等的两个四边形相似”的探究过程.