①用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数a,b,c中恰有一个奇数”时正确的反设为“自然数a,b,c中至少有两个奇数或都是偶数”;
②在复平面内,表示两个共轭复数的点关于实轴对称;
③在回归直线方程 =﹣0.3x+10中,当变量x每增加一个单位时,变量 平均增加0.3个单位;
④抛物线y=x2过点( ,2)的切线方程为2x﹣y﹣1=0.
男 | 女 | 合 计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
合 计 | 60 | 50 | 110 |
根据上述数据能得出的结论是( )
(参考公式与数据:X2= .当X2>3.841时,有95%的把握说事件A与B有关;当X2>6.635时,有99%的把握说事件A与B有关; 当X2<3.841时认为事件A与B无关.)
如图所示三角形数阵中,aij为第i行第j个数,若amn=2017,则实数对(m,n)为.
①食物投掷地点有远、近两处;
②由于“萌娃”Grace年纪尚小,所以要么不参与该项任务,但此时另需一位“萌娃”在大本营陪同,要么参与搜寻近处投掷点的食物;
③所有参与搜寻任务的“萌娃”须被均分成两组,一组去远处,一组去近处.
则不同的搜寻方案有种.
(ⅰ)求实数a的值;
(ⅱ)若a非正,比较f(x)与x(x﹣1)的大小;