①向量 ,有| |2= 2;类比复数z,有|z|2=z2
②实数a,b有(a+b)2=a2+2ab+b2;类比向量 , ,有( )2= 2 2
③实数a,b有a2+b2=0,则a=b=0;类比复数z1 , z2 , 有z12+z22=0,则z1=z2=0
其中类比结论正确的命题个数为( )
(Ⅰ)完成下列2×2列联表:
喜欢旅游 | 不喜欢旅游 | 合计 | |
女性 | |||
男性 | |||
合计 |
(II)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
X | 0 | 1 | 2 | 3 |
P | 0.1 | 0.3 | 2a | a |
自我熬夜学习的总时长超过21小时,则称为“过度熬夜”.
(Ⅰ)请根据样本数据,分别估计甲,乙两班的学生平均每周自我熬夜学习时长的平均值;
(Ⅱ)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率;
(Ⅲ)从甲班、乙班的样本中各随机抽取2名学生的数据,记“过度熬夜”的学生人数为X,写出X的分布列和数学期望E(X).