当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2016-2017学年北京五十六中九年级上学期期中数学试卷

更新时间:2017-01-06 浏览次数:579 类型:期中考试
一、选择题
二、填空题
三、解答题
  • 17. (2016九上·北京期中) 若二次函数的图象过(﹣3,0)、(1,0)、(0,﹣3)三点,求这个二次函数的解析式.
  • 18. (2016九上·北京期中) 若二次函数y=ax2+bx+c的图像最高点为(1,3)经过(﹣1,0)两点,求此二次函数的解析式.
  • 19. (2016九上·北京期中) 已知二次函数的解析式是y=x2﹣2x﹣3
    1. (1) 用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
    2. (2) 在直角坐标系中,用五点法画出它的图像;

    3. (3) 利用图象求当x为何值时,函数值y<0
    4. (4) 当x为何值时,y随x的增大而减小?
    5. (5) 当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.
  • 20. (2016九上·北京期中) 如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=10cm,OM:OC=3:5,求弦AB的长.

  • 21. (2016九上·北京期中) 如图,在平面直角坐标系中,四边形OABC四个顶点的坐标分别为O(0,0),A(﹣3,0),B(﹣4,2),C(﹣1,2).将四边形OABC绕点O顺时针旋转90°后,点A,B,C分别落在点A′,B′,C′处.

    1. (1) 请你在所给的直角坐标系中画出旋转后的四边形OA′B′C′;
    2. (2) 点C旋转到点C′所经过的弧的半径是,点C经过的路线长是
  • 22. (2016九上·北京期中) 如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.

    1. (1) 求证:DE是圆O的切线;
    2. (2) 若∠C=30°,CD=10cm,求圆O的半径.
  • 23. (2016九上·北京期中) 如图,二次函数y1=ax2+bx+3的图像与x轴相交于点A(﹣3,0)、B(1,0),交y轴于点C,C,D是二次函数图象上的一对对称点,一次函数y2=mx+n的图像经过B、D两点.

    1. (1) 求二次函数的解析式及点D的坐标;
    2. (2) 根据图像写出y2>y1时,x的取值范围.
  • 24. (2016九上·北京期中) 抛物线y=﹣x2+(m﹣1)x+m.
    1. (1) 求证:无论m为何值,这条抛物线都与x轴至少有一个交点;
    2. (2) 求它与x轴交点坐标A,B和与y轴的交点C的坐标;(用含m的代数式表示点坐标)
    3. (3) SABC=3,求抛物线的解析式.
  • 25. (2024九上·罗平期中) 某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,
    1. (1) 求该商品平均每天的利润y(元)与涨价x(元)之间的函数关系式;
    2. (2) 问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润;
    3. (3) 若每件商品的售价不高于13元,那么将售价定为多少元时,可以获最大利润?
  • 26. (2016九上·北京期中) 阅读下面材料:

    如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.

    观察图像可知:

    ①当x=﹣3或1时,y1=y2

    ②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图象,可以得到不等式ax+b> 的解集.

    有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.

    某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

    下面是他的探究过程,请将(1)、(2)、(3)补充完整:

    1. (1) ①将不等式按条件进行转化:

      当x=0时,原不等式不成立;

      当x>0时,原不等式可以转化为x2+4x﹣1>

      当x<0时,原不等式可以转化为x2+4x﹣1<

      ②构造函数,画出图像

      设y3=x2+4x﹣1,y4= , 在同一坐标系中分别画出这两个函数的图象.

      双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)

    2. (2) 确定两个函数图象公共点的横坐标

      观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为

    3. (3) 借助图像,写出解集

      结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为

  • 27. (2016九上·北京期中)

    已知如图:抛物线y=x2﹣1与x轴交于A,B两点,与y轴交于点C.

    1. (1) 求A,B,C三点的坐标.

    2. (2) 过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.

  • 28. (2016九上·北京期中)

    如图,在直角坐标系中,O为坐标原点,二次函数y=x2+mx+2的图象与x轴的正半轴交于点A,与y轴的正半轴交交于点B,且OA:OB=1:2.设此二次函数图象的顶点为D.

    1. (1) 求这个二次函数的解析式;

    2. (2) 将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;

    3. (3) 设(2)中平移后所得二次函数图象与y轴的交点为B1 , 顶点为D1 . 点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.

微信扫码预览、分享更方便

试卷信息