当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2015-2016学年浙江省金华十六中九年级上学期期末数学试...

更新时间:2017-01-05 浏览次数:937 类型:期末考试
一、仔细选一选
二、认真填一填
三、全面解一解
  • 17. (2016九上·金华期末) 计算:(﹣ 1+ tan30°﹣sin245°+(2016﹣cos60°)0
  • 18. (2016九上·金华期末) 一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.

  • 19. (2016九上·金华期末) 如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB‖ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

  • 20. (2016九上·金华期末) 将两张半径均为10的半圆形的纸片完全重合叠放一起,上面这张纸片绕着直径的一端B顺时针旋转30°后得到如图所示的图形, 与直径AB交于点C,连接点C与圆心O′.

    1. (1) 求 的长;
    2. (2) 求图中下面这张半圆形纸片未被上面这张纸片重叠部分的面积S
  • 21. (2016九上·金华期末) 如图,⊙O是△ABC的外接圆,∠A=60°,过点C作⊙O的切线,交射线BO于点E.

    1. (1) 求∠BCE的度数;
    2. (2) 若⊙O半径为3,求BE长.
  • 22. (2016九上·金华期末)

    如图,抛物线y=﹣x2+6x与x轴交于点O,A,顶点为B,动点E在抛物线对称轴上,点F在对称轴右侧抛物线上,点C在x轴正半轴上,且EF OC,连接OE,CF得四边形OCFE.


    1. (1) 求B点坐标;

    2. (2) 当tan∠EOC= 时,显然满足条件的四边形有两个,求出相应的点F的坐标;

    3. (3) 当0<tan∠EOC<3时,对于每一个确定的tan∠EOC值,满足条件的四边形OCFE有两个,当这两个四边形的面积之比为1:2时,求tan∠EOC.

  • 23. (2016九上·金华期末)

    要利用28米长的篱笆和一堵最大可利用长为12米的墙围成一个如图1的一边靠墙的矩形养鸡场,在围建的过程中遇到了以下问题,请你帮忙来解决.


    1. (1) 这个矩形养鸡场要怎样建面积能最大?求出这个矩形的长与宽;

    2. (2) 在(1)的前提条件下,要在墙上选一个点P,用不可伸缩的绳子分别连接BP,CP,点P取在何处所用绳子长最短?

    3. (3) 仍然是矩形养鸡场面积最大的情况下,若把(2)中的不可伸缩的绳子改为可以伸缩且有弹性的绳子,点P可以在墙上自由滑动,求sin∠BPC的最大值.

  • 24. (2016九上·金华期末)

    如图,在平面直角坐标系中,抛物线l1与x轴交于点A,B,与y轴交于点C,l1的解析式为y= x2﹣2,若将抛物线l1平移,使平移后的抛物线l2经过点A,对称轴为直线x=﹣6,抛物线l2与x轴的另一个交点是E,顶点是D,连结OD,AD,ED.


    1. (1) 求抛物线l2的解析式;

    2. (2) 求证:△ADE∽△DOE;

    3. (3) 半径为1的⊙P的圆心P沿着直线x=﹣6从点D运动到F(﹣6,0),运动速度为1单位/秒,运动时间为t秒,⊙P绕着点C顺时针旋转90°得⊙P1 , 随着⊙P的运动,求P1的运动路径长以及当⊙P1与y轴相切的时候t的值.

微信扫码预览、分享更方便

试卷信息