当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2015-2016学年浙江省宁波市江北区九年级上学期期末数学...

更新时间:2017-01-04 浏览次数:862 类型:期末考试
一、选择题
二、填空题
  • 13. (2016九上·江北期末) 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:

    种子粒数

    100

    400

    800

    1000

    2000

    5000

    发芽种子粒数

    85

    298

    652

    793

    1604

    4005

    发芽频率

    0.850

    0.745

    0.815

    0.793

    0.802

    0.801

    根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).

  • 14. (2018·绍兴模拟) 大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为 cm.

  • 15. (2016九上·江北期末) 如图,六个正方形组成一个矩形,A,B,C均在格点上,则∠ABC的正切值为

  • 16. (2016九上·江北期末) 如图,将一段12cm长的管道竖直置于地面,并在上面放置一个半径为5cm的小球,放置完毕以后小球顶端距离地面20cm,则该管道的直径AB为

  • 17. (2016九上·江北期末) 如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为 cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

  • 18. (2016九上·江北期末) 如图,过y轴上一点P(0,1)作平行于x轴的直线PB,分别交函数y1=x2(x≥0)与y2= (x≥0)的图象于A1 , B1两点,过点B1作y轴的平行线交y1的图象于点A2 , 再过A2作直线A2B2∥x轴,交y2的图象于点B2 , 依次进行下去,连接A1A2 , B1B2 , A2A3 , B2B3 , …,记△A2A1B1的面积为S1 , △A2B1B2的面积为S2 , △A3A2B2的面积为S3 , △A3B2B3的面积为S4 , …则S2016=

三、解答题
  • 19. (2016九上·江北期末) 计算:2cos30°+| ﹣2|+(2016﹣π)0﹣( 1
  • 20. (2016九上·江北期末) 如图,△ABC中,DE∥FG∥BC,AD:DF:FB=1:2:3,求S四边形DFGE:S四边形FBCG的值.

  • 21. (2016九上·江北期末) 如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)

  • 22. (2016九上·江北期末) 如图,PB切⊙O于点B,联结PO并延长交⊙O于点E,过点B作BA⊥PE交⊙O于点A,联结AP,AE.

    1. (1) 求证:PA是⊙O的切线;
    2. (2) 如果OD=3,tan∠AEP= ,求⊙O的半径.
  • 23. (2016九上·崇仁期中) 甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.
    1. (1) 若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?
    2. (2) 若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.
  • 24. (2016九上·江北期末) 某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量与销售单价基本满足一次函数关系,并且当销售单价为26元时,每天销售量28台;当销售单价为32元时,每天销售量16台,设台灯的销售单价为x(元),每天的销售量为y(台).
    1. (1) 求y与x之间的函数关系式;
    2. (2) 当销售单价定为多少元时,每天的利润最大?最大利润是多少?
    3. (3) 若该商场每天想获得150元的利润,在保证销售量尽可能大的前提下,应将销售单价定为多少元?
  • 25. (2016九上·江北期末)

    由若干边长为1的小正方形拼成一系列“L”形图案(如图1).

    1. (1) 当“L”形由7个正方形组成时,其周长为

    2. (2) 如图2,过格点D作直线EF,分别交AB,AC于点E,F.

      ①试说明AE•AF=AE+AF;

      ②若“L”形由n个正方形组成时,EF将“L”形分割开,直线上方的面积为整个“L”形面积的一半,试求n的取值范围以及此时线段EF的长.

  • 26. (2016九上·江北期末)

    已知x轴上有点A(1,0),点B在y轴上,点C(m,0)为x轴上一动点且m<﹣1,连接AB,BC,tan∠ABO= ,以线段BC为直径作⊙M交直线AB于点D,过点B作直线l∥AC,过A,B,C三点的抛物线为y=ax2+bx+c,直线l与抛物线和⊙M的另一个交点分别是E,F.

    1. (1) 求B点坐标;

    2. (2) 用含m的式子表示抛物线的对称轴;

    3. (3) 线段EF的长是否为定值?如果是,求出EF的长;如果不是,说明理由.

    4. (4) 是否存在点C(m,0),使得BD= AB?若存在,求出此时m的值;若不存在,说明理由.

微信扫码预览、分享更方便

试卷信息