当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2016年北京市大兴区中考数学一模试卷

更新时间:2017-01-19 浏览次数:1088 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2016·大兴模拟) 计算: ﹣( ﹣1)0+( 2﹣4sin45°.
  • 18. (2016·大兴模拟) 已知a是一元二次方程x2+3x﹣2=0的实数根,求代数式 的值.
  • 19. (2016·大兴模拟) 解不等式 ≥1,并把它的解集在数轴上表示出来.

  • 20. (2016·大兴模拟) 已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点F.

    求证:BF=AC.

  • 21. (2016·大兴模拟) 列方程或方程组解应用题:

    某校师生开展读书活动.九年级一班和九年级二班的学生向学校图书馆借课外读物共196本,一班每位学生借3本,二班每位学生借2本,一班借的课外读物数量比二班借的课外读物数量多44本,求九年级一班和二班各有学生多少人?

  • 22. (2016·大兴模拟) 在▱ABCD中,过点D作对DE⊥AB于点E,点F在边CD上,CF=AE,连结AF,BF.

    1. (1) 求证:四边形BFDE是矩形.
    2. (2) 若CF=6,BF=8,DF=10,求证:AF是∠DAB的角平分线.
  • 23. (2016·大兴模拟) 已知:如图,一次函数 与反比例函数 的图象在第一象限的交点为A(1,n).

    1. (1) 求m与n的值;
    2. (2) 设一次函数的图象与x轴交于点B,连结OA,求∠BAO的度数.
  • 24. (2016·大兴模拟)

    如图,已知AB是⊙O的直径,点H在⊙O上,E是  的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.

    1. (1) 求证:CE是⊙O的切线;

    2. (2) 若FB=2,tan∠CAE= ,求OF的长.

  • 25. (2016·大兴模拟) 为了更好地贯彻落实国家关于“强化体育课和课外锻炼,促进青少年身心健康、体魄强健”的精神,某校大力开展体育活动.该校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:

    1. (1) 求该班学生人数;
    2. (2) 请你补全条形图;
    3. (3) 求跳绳人数所占扇形圆心角的度数.
  • 26. (2016·大兴模拟)

    研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定方法.我们给出如下定义:如图,四边形ABCD中,AB=AD,CB=CD像这样两组邻边分别相等的四边形叫做“筝形”;

    1. (1) 小文认为菱形是特殊的“筝形”,你认为他的判断正确吗?

    2. (2) 小文根据学习几何图形的经验,通过观察、实验、归纳、类比、猜想、证明等方法,对AB≠BC的“筝形”的性质和判定方法进行了探究.下面是小文探究的过程,请补充完成:

      ①他首先发现了这类“筝形”有一组对角相等,并进行了证明,请你完成小文的证明过程.

      已知:如图,在”筝形”ABCD中,AB=AD,CB=CD.

      求证:∠ABC=∠ADC.

      证明:②小文由①得到了这类“筝形”角的性质,他进一步探究发现这类“筝形”还具有其它性质,请再写出这类“筝形”的一条性质(除“筝形”的定义外)

      ③继性质探究后,小文探究了这类“筝形”的判定方法,写出这类“筝形”的一条判定方法(除“筝形”的定义外):

  • 27. (2016·大兴模拟) 抛物线y1=mx2+(m﹣3)x﹣3(m>0)与x轴交于A、B两点,且点A在点B的左侧,与y轴交于点C,OB=OC.

    1. (1) 求这条抛物线的表达式;
    2. (2) 将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,若点C在直线y2=﹣3x+t上,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求n的取值范围.
  • 28. (2016·大兴模拟)

    已知正方形ABCD,E为平面内任意一点,连结DE,将线段DE绕点D顺时针旋转90°得到DG,连结EC,AG.

    1. (1) 当点E在正方形ABCD内部时,

      ①依题意补全图形;

      ②判断AG与CE的数量关系与位置关系并写出证明思路.

    2. (2) 当点B,D,G在一条直线时,若AD=4,DG= ,求CE的长.

  • 29. (2016·大兴模拟)

    设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).

    例如:函数f(x)=x2﹣2x﹣3,当x=4时,f(4)=42﹣2×4﹣3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:

    如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.

    例如:二次函数f(x)=x2﹣2x﹣3的图象如图1所示.


    观察可知:f(﹣2)>0,f(1)<0,则f(﹣2).f(1)<0.所以函数f(x)=x2﹣2x﹣3在﹣2≤x≤1范围内有零点.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零点,﹣1也是方程x2﹣2x﹣3=0的根.

    1. (1) 观察函数y1=f(x)的图象2,回答下列问题:

      ①f(a)•f(b) 0(“<”“>”或“=”)

      ②在a≤x≤b范围内y1=f(x)的零点的个数是

    2. (2) 已知函数y2=f(x)=﹣ 的零点为x1 , x2 , 且x1<1<x2

      ①求零点为x1 , x2(用a表示);

      ②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1 , x2 , 点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.

微信扫码预览、分享更方便

试卷信息