当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省绍兴市2019年中考数学试卷

更新时间:2024-07-13 浏览次数:1704 类型:中考真卷
一、选择题(本大题有10小题,每小题4分,共40分)
二、填空题(本大题有6小题,每小题5分,共30分)
三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分。)
  • 17. (2019·绍兴)            
    1. (1) 计算:4sin60°+(π-2)0-( )-
    2. (2) x为何值时,两个代数式x2+1,4x+1的值相等?
  • 18. (2019·绍兴) 如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象。

    1. (1) 根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路。当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程。
    2. (2) 当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量。
  • 19. (2020·三明模拟) 小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图。

    根据图中信息,解答下列问题:

    1. (1) 这5期的集训共有多少天?小聪5次测试的平均成绩是多少?
    2. (2) 根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.。
  • 20. (2019·绍兴) 如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上。

    1. (1) 转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.
    2. (2) 将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据: ≈1.41, ≈1.73)
  • 21. (2019·绍兴) 在屏幕上有如下内容:

    如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的题长线于点D.张老师要求添加条件后,编制一道题目,并解答。

    1. (1) 在屏幕内容中添加条件∠D=30°,求AD的长,请你解答。
    2. (2) 以下是小明、小思的对话:

      小明:我加的条件是BD=1,就可以求出AD的长。

      小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可证明△ACB与△DCO全等。

      参考此对话:在屏幕内容中添加条件,编制一道题(可以添线、添字母),并解答。

  • 22. (2019·绍兴) 有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°, ∠C=135°. ∠E>90°.要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大。

    1. (1) 若所截矩形材料的一条边是BC或AE,求矩形材料的面积。
    2. (2) 能否数出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.
  • 23. (2021九上·鹿城月考) 如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.

    1. (1) 在旋转过程中,

      ①当A,D,M三点在同一直线上时,求AM的长。

      ②当A,D,M三点为同一直角三角形的顶点时,求AM的长。

    2. (2) 若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2 , 如图2.此时∠AD2C=135°,CD2=60,求BD2的长.
  • 24. (2019·绍兴) 如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.

    1. (1) 若a:b的值为1,当MN⊥EF时,求k的值。
    2. (2) 若a:b的值为 ,求k的最大值和最小值。
    3. (3) 若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b为的值。

微信扫码预览、分享更方便

试卷信息