当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

贵州省安顺市2019年中考数学试卷

更新时间:2024-07-13 浏览次数:746 类型:中考真卷
一、选择题(本大题10个小题,每小题3分,共30分)
二、填空题(本大题共8个小题,每小题4分,共32分)
三、解答题(本大题共8个小题,满分88分.)
  • 19. (2019·安顺) 计算:(-2)-1 +cos600+( )0+82019×(-0.125)2019.
  • 20. (2024九下·满洲里模拟) 先化简(1+ )÷ ,再从不等式组 的整数解中选一个合适的x的值代入求值.
  • 21. (2019·安顺) 安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千元)与每千元降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:

    1. (1) 求y与x之间的函数关系式;
    2. (2) 商贸公司要想获利2090元,则这种干果每千克应降价多少元?
  • 22. (2019·安顺) 阅读以下材料:

    对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系.

    对数的定义:一般地,若 =N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=logaN,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.

    我们根据对数的定义可得到对数的一个性质:

    loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0),理由如下:

    设logaM=m,logaN=n,则M=am , N=an

    ∴M•N=am•an=am+n , 由对数的定义得m+n=loga(M•N)

    又∵m+n=logaM+logaN

    ∴loga(M•N)=logaM+logaN

    根据阅读材料,解决以下问题:

    1. (1) 将指数式34=81转化为对数式
    2. (2) 求证:loga =logaM-logaN(a>0,a≠1,M>0,N>0),
    3. (3) 拓展运用:计算log69+log68-log62=.
  • 23. (2019·安顺) 近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;   B.比较了解   C.基本了解;   D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.

    请结合统计图表,回答下列问题:

    1. (1) 本次参与调查的学生共有,n=
    2. (2) 扇形统计图中D部分扇形所对应的圆心角是度;
    3. (3) 请补全条形统计图;
    4. (4) 根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
  • 24. (2019·安顺) 如图:

    1. (1) 如图①,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.

      解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.

      AB,AD,DC之间的等量关系

    2. (2) 问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.
  • 25. (2019·安顺) 如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.

    1. (1) 判断DH与⊙O的位置关系,并说明理由;
    2. (2) 求证:点H为CE的中点;
    3. (3) 若BC=10,cosC= ,求AE的长.
  • 26. (2019·安顺) 如图,抛物线y= x2+bx+c与直线y= x+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC.已知A(0,3),C(-3,0).

    1. (1) 求抛物线的解析式;
    2. (2) 在抛物线对称轴l上找一点M,使|MB-MC|的值最大,并求出这个最大值;
    3. (3) 点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若还在存在,请说明理由.

微信扫码预览、分享更方便

试卷信息