当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年湖南省长沙市中考数学试卷

更新时间:2024-07-12 浏览次数:2097 类型:中考真卷
一、选择题(本大题共12小题,每小题3分,共36分)
二、填空题
三、解答题
  • 19. (2017·长沙) 计算:|﹣3|+(π﹣2017)0﹣2sin30°+( 1
  • 20. (2019八上·长沙月考) 解不等式组 ,并把它的解集在数轴上表示出来.

  • 21. (2022九下·长沙开学考) 为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.

    组别

    分数段

    频次

    频率

    A

    60≤x<70

    17

    0.17

    B

     70≤x<80

     30

     a

    C

     80≤x<90

     b

     0.45

    D

     90≤x<100

     8

     0.08

    请根据所给信息,解答以下问题:

    1. (1) 表中a=,b=
    2. (2) 请计算扇形统计图中B组对应扇形的圆心角的度数;
    3. (3) 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
  • 22. (2020九上·镇海期末)

    为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.

    1. (1) 求∠APB的度数;

    2. (2) 已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?

  • 23. (2024九下·岳阳月考) 如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E, =

    1. (1) 求证:OA=OB;
    2. (2) 已知AB=4 ,OA=4,求阴影部分的面积.
  • 24. (2017·长沙) 自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.
    1. (1) 求一件A,B型商品的进价分别为多少元?
    2. (2) 若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;
    3. (3) 在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.
  • 25. (2017·长沙) 若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.

    1. (1) 实数1,2,3可以构成“和谐三组数”吗?请说明理由;

    2. (2) 若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数 (k为常数,k≠0)的图象上,且这三点的纵坐标y1 , y2 , y3构成“和谐三组数”,求实数t的值;

    3. (3) 若直线y=2bx+2c(bc≠0)与x轴交于点A(x1 , 0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2 , y2),C(x3 , y3)两点.

      ①求证:A,B,C三点的横坐标x1 , x2 , x3构成“和谐三组数”;

      ②若a>2b>3c,x2=1,求点P( )与原点O的距离OP的取值范围.

  • 26. (2017·长沙)

    如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.

    1. (1) 若△OAC为等腰直角三角形,求m的值;

    2. (2) 若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);

    3. (3) 当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0 , y0)总有n+ ≥﹣4 my02﹣12 y0﹣50成立,求实数n的最小值.

微信扫码预览、分享更方便

试卷信息