在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是 ,则黄球的个数为( ).
①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a +bx+c=a(x-p)(x-q)②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
x |
… |
﹣1 |
0 |
1 |
2 |
3 |
… |
y |
… |
10 |
5 |
2 |
1 |
2 |
… |
①用关于x的代数式表示线段EF的长;
②求S的最大值;