当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

福建省宁德市2016-2017学年八年级下学期期末考试数学试...

更新时间:2024-07-12 浏览次数:625 类型:期末考试
一、选择题
二、填空题
三、解答题
  • 18. (2020八下·禅城期末)

    如图,已知▱ABCD,AB>AD,分别以点A,C为圆心,以AD,CB长为半径作弧,交AB,CD于点E,F,连接AF,CE.求证:AF=CE.


  • 19. (2017八下·宁德期末) 解不等式组 并将解集在数轴上表示出来.

  • 20. (2017八下·宁德期末)

    如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,分别交AC,AD,AB于点E,M,F.若∠CAD=20°,求∠MCD的度数.

  • 21. (2017八下·宁德期末)

    如图,已知菱形ABCD,AB=5,对角线BD=8,作AE⊥BC于点E,CF⊥AD于点F,连接EF,求EF的长.

  • 22. (2017八下·宁德期末) 为响应“足球进校园”的号召,某校到商场购买甲、乙两种足球,购买甲种足球共花费1600元,乙种足球共花费1200元.已知甲种足球的单价是乙种足球单价的2倍,且购买甲种足球的数量比乙种足球少10个.

    1. (1) 设乙种足球的单价为x元,用含x的代数式表示下表中相关的量

       品种

      购买个数

      单价

      总价

      甲种足球

       

       乙种足球

      x

      1200

    2. (2) 列方程求乙种足球的单价.

  • 23. (2017八下·宁德期末)

    课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1 . 请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”

    1. (1) 小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2 , 再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2 , 并描述旋转过程;

    2. (2) 小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1 . 请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.

  • 24. (2017八下·宁德期末)

    甲、乙两人利用不同的交通工具,沿同一路线分别从A、B两地同时出发匀速前往C地(B在A、C两地的途中).设甲、乙两车距A地的路程分别为y、y(千米),行驶的时间为x(小时),y、y与x之间的函数图象如图所示.

    1. (1) 直接写出y、y与x之间的函数表达式;

    2. (2) 如图,过点(1,0)作x轴的垂线,分别交y、y的图象于点M,N.求线段MN的长,并解释线段MN的实际意义;

    3. (3) 在乙行驶的过程中,当甲、乙两人距A地的路程差小于30千米时,求x的取值范围.

    1. (1) 观察发现:如图1,已知Rt△ABC,∠ABC=90°,分别以AB,BC为边,向外作正方形ABDE和正方形BCFG,连接DG.若M是DG的中点,不难发现:BM= AC.

      请完善下面证明思路:①先根据 ,证明BM= DG;②再证明 ,得到DG=AC;所以BM= AC;

    2. (2) 数学思考:若将上题的条件改为:“已知Rt△ABC,∠ABC=90°,分别以AB,AC为边向外作正方形ABDE和正方形ACHI,N是EI的中点”,则相应的结论“AN= BC”成立吗?小颖通过添加如图2所示的辅助线验证了结论的正确性.请写出小颖所添加的辅助线的作法,并由此证明该结论;

    3. (3)

      拓展延伸:如图3,已知等腰△ABC和等腰△ADE,AB=AC,AD=AE.连接BE,CD,若P是CD的中点,探索:当∠BAC与∠DAE满足什么条件时,AP= BE,并简要说明证明思路.

微信扫码预览、分享更方便

试卷信息