如图,等腰三角形ABC中,AB=AC,BD是AC边上的高,若∠A=36°,则∠DBC的大小是( )
已知一个不等式组的解集如图所示,则以下各数是该不等式组的解的是( )
如图,已知AB=DC,下列所给的条件不能证明△ABC≌△DCB的是( )
如图,已知四边形ABCD的对角线AC⊥BD,则顺次连接四边形ABCD各边中点所得的四边形是( )
如图是3×4正方形网格,其中已有5各小方格涂上阴影,若再选取标有①,②,③,④中的一个小方格涂上阴影,使图中所有涂上阴影的小方格组成一个中心对称图形,则该小方格是.(填序号)
如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC于点E,则EP的长是.
如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,分别交AC,AD,AB于点E,M,F.若∠CAD=20°,求∠MCD的度数.
如图,已知菱形ABCD,AB=5,对角线BD=8,作AE⊥BC于点E,CF⊥AD于点F,连接EF,求EF的长.
品种 | 购买个数 | 单价 | 总价 |
甲种足球 |
| ||
乙种足球 | x | 1200 |
课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1 . 请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”
甲、乙两人利用不同的交通工具,沿同一路线分别从A、B两地同时出发匀速前往C地(B在A、C两地的途中).设甲、乙两车距A地的路程分别为y甲、y乙(千米),行驶的时间为x(小时),y甲、y乙与x之间的函数图象如图所示.
请完善下面证明思路:①先根据 ,证明BM= DG;②再证明 ,得到DG=AC;所以BM= AC;
拓展延伸:如图3,已知等腰△ABC和等腰△ADE,AB=AC,AD=AE.连接BE,CD,若P是CD的中点,探索:当∠BAC与∠DAE满足什么条件时,AP= BE,并简要说明证明思路.