当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

湖北省武汉市2020年数学中考模拟试卷

更新时间:2024-11-06 浏览次数:431 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 18. (2020九上·麻城期中) 如图,A、B是⊙O上的两点,∠AOB=120°,C是弧AB的中点,CE⊥OA交⊙O于点E,连接AE.求证:AE=AO.

  • 19. (2022九下·淮南月考) 为了有效保护环境,某景区要求游客将垃圾按可回收垃圾,不可回收垃圾,有害垃圾分类投放.一天,小林一家游玩了该景区后,把垃圾按要求分成三袋并随机投入三类垃圾桶中,请用列树状图的方法求三袋垃圾都投对的概率.
  • 20. (2020·武汉模拟) 在正方形ABCD中,E为AB的中点.

    1. (1) 将线段AB绕点O逆时针旋转一定角度,使点A与点B重合,点B与点C重合,用无刻度直尺作出点O的位置,保留作图痕迹;
    2. (2) 将△ABD绕点D逆时针旋转某个角度,得到△CFD,使DA与DC重合,用无刻度直尺作出△CFD,保留作图痕迹.
  • 21. (2020·武汉模拟) 如图,在⊙O中,AB为直径,F是半圆弧AB的中点,E是弧BF上一点,直线AE与过点B的切线相交于点C,连接EF.

    1. (1) 若EF= AB,求∠ACB的度数;
    2. (2) 若⊙O的半径为3,BC=2,求EF的长.
  • 22. (2020·武汉模拟) 某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.

    1. (1) 以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;
    2. (2) 若支柱每米造价为2万元,求5根支柱的总造价;
    3. (3) 拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?
  • 23. (2020·武汉模拟) 已知平行四边形ABCD.

    1. (1) 如图1,将▱ABCD绕点D逆时针旋转一定角度得到▱A1B1C1D,延长B1C1 , 分别与BC、AD的延长线交于点M、N.

      ①求证:∠BMB1=∠ADA1

      ②求证:B1N=AN+C1M;

    2. (2) 如图2,将线段AD绕点D逆时针旋转,使点A的对应点A1落在BC上,将线段CD绕点D逆时针旋转到C1D的位置,AC1与A1D交于点H.若H为AC1的中点,∠ADC1+∠A1DC=180°,A1B=nA1C,试用含n的式子表示 的值.
  • 24. (2020·济源模拟) 已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.

    1. (1) 求抛物线的解析式;
    2. (2) 如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;
    3. (3) 如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF不与y轴平行),求证:直线EF恒过某一定点.

微信扫码预览、分享更方便

试卷信息