当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市2020年数学中考复习卷(一)

更新时间:2024-07-13 浏览次数:524 类型:中考模拟
一、选择题(本题有10小题,每小题4分,共40分.)
二、填空题(本题有6小题,每小题5分,共30分)
三、解答题(本题有8小题,共80分)
    1. (1) 计算:20200- +|1- |+2sin60°
    2. (2) 先化简,再求值 ,其中x= +1。
  • 18. (2020·温州模拟) 如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC。

    1. (1) 求证:△ABE≌△DCE;
    2. (2) 当∠AEB=50°时,求∠EBC的度数。
  • 19. (2020·温州模拟) 为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽取n名学生作为样本,采用问卷调查的方式收集数据(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图,由图中提供的信息,解答下列问题:

    1. (1) 补全条形统计图;
    2. (2) 若该校共有学生2400名,试估计该校喜爱看电视的学生人数.
    3. (3) 若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名,求恰好抽到2名男生的概率.
  • 20. (2020·温州模拟) 图1,图2是两张形状、大小完全相同的8×10方格纸,方格纸中的每个小正方形的边长均为1,点A,B,C均位于格点处,请按要求画出格点四边形(四边形各顶点都在格点上)。

    1. (1) 在图1中画出一个以点A,B,C,P为顶点的格点四边形,且为中心对称图形。
    2. (2) 在图2中画出一个以点A,B,C,Q为顶点的格点四边形,AC平分∠BCQ,且有两个内角为90°。
  • 21. (2020·温州模拟) 如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D。E是AB延长线上一点,CE交⊙O于点F,连结OC,AC。

    1. (1) 求证:AC平分∠DAO.
    2. (2) 若∠DAO=105°,∠E=30°。

      ①求∠OCE的度数。

      ②若⊙O的半径为 ,求线段EF的长。

  • 22. (2020·温州模拟) 如图,在平面直角坐标系中,抛物线y=ax²-4ax交x轴于点A,直线y= x+3与x轴交于点B,与y轴交于点C,与抛物线交于点D,E(点D在点E的右侧)。

    1. (1) 求点A,B,C的坐标。
    2. (2) 当点D为BC的中点时,求a的值。
    3. (3) 若设抛物线的顶点为点M,点M关于直线BC的对称点为N, 当点N落在△BOC的内部时,求a的取值范围。
  • 23. (2020·温州模拟) “创科集团”会议室内的一个长为6米、宽为4米的矩形ABCD墙面需要进行装饰,设计图案如图所示,将矩形ABCD墙面分割成3个区域,中间“十”字形区域甲的宽度均为1米,四个角为四个全等的直角三角形,△AEF,△BGH,△CMN,△DPQ为区域乙,剩下部分为区域丙,其中AE=BG=CN=DP,设EG=HM=NP=FQ=x(米)(1≤x≤3)

    1. (1) 当x=2时,求区域乙的面积;
    2. (2) 求区域丙的面积的最大值;
    3. (3) 为了图案富有美感,设置区域乙与区域丙的面积之比为1:4,在区域甲、区域乙、区域丙分别嵌贴甲、乙、丙三种不同的装饰板,这三种装饰板每平方米的单价分别为a(百元),b(百元),c(百元)(a,b,c均为整数,且6<a<10),若a+b+c=20,整个墙面嵌贴共花费了150(百元),求三种装饰板每平方米的单价。
  • 24. (2020·温州模拟) 如图,在矩形ABCD中,AB=8,AD=6,P为射线AB上一个动点,过P作PF⊥AC,垂足为F,交CD于点G,连接CP与BF交于点H,过点C,P,F作⊙O。

    1. (1) 当AP=5时,求证:∠CPB=∠FBC。
    2. (2) 当点P在线段AB上时,若△FCH的面积等于△PBH面积的4倍,求DG的长。
    3. (3) 当⊙O与△ADC的其中一边相切时,求所有满足条件的AP的长。
    4. (4) 当H将线段CP分成1:4的两部分时,求AP的长(直接写出结果)。

微信扫码预览、分享更方便

试卷信息