当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省大同市2018-2019学年八年级下学期数学期末考试试...

更新时间:2020-06-19 浏览次数:288 类型:期末考试
一、选择题
二、填空题
三、综合题
    1. (1) (1- )+|1-2 |+ × .
    2. (2) ( +2 - .
  • 17. (2019八下·大同期末) 如图,在 ABCD中,延长边BA到点E,延长边DC到点F,使CF=AE,连接EF,分别交AD,BC于点M,N.

    求证:AM=CN.

  • 18. (2021·青岛模拟) 如图,正比例函数y1=kx与-次函数y2=mx+n的图象交于点A(3,4),一次函数y2的图象与x轴,y轴分别交于点B,点C,且0A=OC.

    1. (1) 求这两个函数的解析式;
    2. (2) 求直线AB与两坐标轴所围成的三角形的面积.
  • 19. (2019八下·大同期末) 随着教育教学改革的不断深入,应试教育向素质教育转轨的力度不断加大,体育中考已成为初中毕业升学考试的重要内容之一。为了解某市九年级学生中考体育成绩情况,现从中随机抽取部分考生的体育成绩进行调查,并将调查结果绘制如下图表:

    2019年中考体育成绩(分数段)统计表

    分数段

    频数(人)

    频率

    25≤x<30

    12

    0.05

    30≤x<35

    24

    b

    35≤x<40

    60

    0.25

    40≤x<45

    a

    0.45

    45≤x<50

    36

    0.15

    根据上面提供的信息,回答下列问题:

    1. (1) 表中a和b所表示的数分别为a=,b=;并补全频数分布直方图
    2. (2) 甲同学说“我的体育成绩是此次抽样调查所得数据的中位数。”请问:甲同学的体育成绩在分数段内?
    3. (3) 如果把成绩在40分以上(含40分)定为优秀那么该市12000名九年级考生中考体育成绩为优秀的约有多少名?
  • 20. (2019八下·大同期末) 阅读下列一段文字,然后回答下列问题:

    已知平面内两点P1(x1y1),P2(x2y2),其两点间的距离 。例如:已知P(3,1),Q(1,-2),则这两点间的距离 .特别地,如果两点M(x1y1),N(x2y2),所在的直线与坐标轴重合或平行于坐标轴或者垂直于坐标轴,那么这两点间的距离公式可简化为

    1. (1) 已知A(2,3),B(-1,-2),则A,B两点间的距离为
    2. (2) 已知M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,则M,N两点间的距离为
    3. (3) 在平面直角坐标系中,已知A(0,4),B(4,2),在x轴上找点P,使PA+PB的长度最短,求出点P的坐标及PA+PB的最短长度.
  • 21. (2019八下·大同期末) “雁门清高”苦荞茶,是大同左云的特产,享誉全国,某经销商计划购进甲、乙两种包装的苦荞茶500盒进行销售,这两种茶的进价、售价如下表所示:

    进价(元/盒)

    售价(元/盒)

    甲种

    40

    48

    乙种

    106

    128

    设该经销离购进甲种包装的苦荞茶x盒,总进价为y元。

    1. (1) 求yx的函数关系式
    2. (2) 为满足市场需求,乙种包装苦荞茶的数量不大于甲种包装数量的4倍,请你求出获利最大的进货方案,并求出最大利润。
  • 22. (2019八下·大同期末) 综合与实践

    (问题情境)

    在综合与实践课上,同学们以“矩形的折叠”为主题展开数学活动,如图1,在矩形纸片ABCD中,AB=4,BC=5,点E,F分别为边AB,AD上的点,且DF=3。

    (操作发现)

    1. (1) 沿CE折叠纸片,B点恰好与F点重合,求AE的长;
    2. (2) 如图2,延长EF交CD的延长线于点M,请判断△CEM的形状,并说明理由。
    3. (3) (深入思考)

      把图2置于平面直角坐标系中,如图3,使D点与原点O重合,C点在x轴的负半轴上,将△CEM沿CE翻折,使点M落在点M′处.连接CM′,求点M′的坐标.

  • 23. (2019八下·大同期末) 综合与探究

    如图,在平面直角坐标系中,直线y= x-3与坐标轴交于A,B两点.

    1. (1) 求A,B两点的坐标;
    2. (2) 以AB为边在第四象限内作等边三角形ABC,求△ABC的面积;
    3. (3) 在平面内是否存在点M,使得以M,O,A,B为顶点的四边形是平行四边形,若存在,直接写出M点的坐标:若不存在,说明理由.

微信扫码预览、分享更方便

试卷信息