当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省绵阳市绵阳外国语学校2019-2020学年九年级上学期...

更新时间:2020-12-03 浏览次数:248 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 19. (2019九上·绵阳期中)              
    1. (1) 解方程:
    2. (2) 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内, 的三个顶点坐标分别为 .

      ①画出 关于 轴对称的

      ②画出 绕点 逆时针旋转 后的

      ③在②的条件下,求线段 扫过的面积(结果保留 ).

  • 20. (2019九上·绵阳期中) 已知于x的元二次方程 有两个不相等的实数根
    1. (1) 求 的取值范围;
    2. (2) 若 ,且 为整数,求 的值.
  • 21. (2019九上·绵阳期中)    2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是: .“解密世园会”、 .“爱我家,爱园艺”、 .“园艺小清新之旅”和 .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.
    1. (1) 李欣选择线路 .“园艺小清新之旅”的概率是多少?
    2. (2) 用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
  • 22. (2019九上·绵阳期中) 如图,菱形 的边 轴上,点 的坐标为 ,点 在反比例函数 )的图象上,直线 经过点 ,与 轴交于点 ,连接 .

    1. (1) 求 的值;
    2. (2) 求 的面积.
  • 23. (2019九上·绵阳期中) 如图,在 中, ,以 为直径的⊙ 于点 ,切线 于点 .

    1. (1) 求证:
    2. (2) 若 ,求 的长.
  • 24. (2019九上·绵阳期中) 交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征.其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度k(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表:

    速度v(千米/小时)

    5

    10

    20

    32

    40

    48

    流量q(辆/小时)

    550

    1000

    1600

    1792

    1600

    1152

    1. (1) 根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只需填上符合题意答案的序号)①q=90v+100 ②q=    ③q=-2v²+120v
    2. (2) 请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最大流量是多少?
    3. (3) 已知q,v,k满足 q=vk,请结合(1)中选取的函数关系式继续解决下列问题:

      ①市交通运行监控平台显示,当 12≤v<18时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;

      ②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值

  • 25. (2019九上·绵阳期中) 如图,抛物线 轴于 两点,交 轴于点 ,点 坐标为 ,以 为直径作 与抛物线交于 轴上同一点 ,连接 .

    1. (1) 求抛物线的解析式;
    2. (2) 点 延长线上一点, 的平分线 于点 ,连接 ,求直线 的解析式;
    3. (3) 在(2)的条件下,抛物线上是否存在点 ,使得 ?若存在,求出 点坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息