当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

内蒙古赤峰市宁城县2020-2021学年高三上学期理数9月摸...

更新时间:2020-12-14 浏览次数:122 类型:月考试卷
一、单选题
二、填空题
三、解答题
  • 17. (2020高三上·宁城月考) 已知数列 的前 项和为 .
    1. (1) 证明: .
    2. (2) 求证数列 为等差数列.
  • 18. (2020高三上·宁城月考) 如图.在 中,点P在边 上,

    1. (1) 求
    2. (2) 若 的面积为 .求
  • 19. (2020高三上·湖北月考) 在三棱锥 中,平面 平面 均是等腰直角三角形, 分别为 的中点.

    1. (1) 求证:
    2. (2) 求直线 与平面 所成角的正弦值.
  • 20. (2020高三上·宁城月考) 已知点 在曲线 上, 是曲线 上异于点 的任意两点, .
    1. (1) 若曲线 的方程为 ,用解析法证明直线 恒过定点;
    2. (2) 若曲线 的方程为 ,有没有与(1)类似的事实?请预测出相应的结论,并给出证明或证伪.
  • 21. (2020高三上·宁城月考) 某医药开发公司实验室有 瓶溶液,其中 瓶中有细菌 ,现需要把含有细菌 的溶液检验出来,有如下两种方案:

    方案一:逐瓶检验,则需检验 次;

    方案二:混合检验,将 瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌 ,则 瓶溶液全部不含有细菌 ;若检验结果含有细菌 ,就要对这 瓶溶液再逐瓶检验,此时检验次数总共为 .

    参考数据:

    1. (1) 假设 ,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌 的概率;
    2. (2) 现对 瓶溶液进行检验,已知每瓶溶液含有细菌 的概率均为 .

      若采用方案一.需检验的总次数为 ,若采用方案二.需检验的总次数为 .

      (i)若 的期望相等.试求 关于 的函数解析式

      (ii)若 ,且采用方案二总次数的期望小于采用方案一总次数的期望.求 的最大值.

  • 22. (2020高三上·宁城月考) 已知曲线 (t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,正方形 的顶点都在 上,且A、B、C、D依逆时针次序排列,点A的极坐标为 .

    (Ⅰ)求曲线 的普通方程及点A、B、C、D的直角坐标;

    (Ⅱ)设P为 上任意一点,求 的取值范围.

  • 23. (2020高三上·宁城月考) 已知函数 .

    (Ⅰ)若不等式 对一切实数x恒成立,求实数a的取值集合A;

    (Ⅱ)若 ,求证:

微信扫码预览、分享更方便

试卷信息