当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

云南省红河州2021届高三理数三模试卷

更新时间:2021-06-26 浏览次数:109 类型:高考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2021·云南模拟) 已知公差不为0的等差数列 的前 项和为 ,且 成等比数列.
    1. (1) 求数列 的通项公式;
    2. (2) 若数列 满足 ,求数列 的前 项和 .
  • 18. (2021·云南模拟) 某市从2020年5月1日开始,若电子警察抓拍到机动车不礼让行人的情况后,交警部门将会对不礼让行人的驾驶员进行扣3分,罚款200元的处罚,并在媒体上曝光.但作为交通重要参与者的行人,闯红灯通行却频有发生,带来了较大的交通安全隐患和机动车通畅率降低点情况.交警部门在某十字路口根据以往的监测数据,得到行人闯红灯的概率为0.2,并从穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯的情况进行统计,得到2×2列联表如下:

    45岁以下

    45岁以上

    合计

    闯红灯人数

    25

    未闯红灯人数

    85

    合计

    200

    近期,为了整顿“行人闯红灯”这一不文明的违法行为,交警部门在该十字路口试行了对闯红灯的行人进行5元以上,50元以下的经济处罚.在试行经济处罚一段时间后,交警部门再次对穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯的情况进行统计,得到2×2列联表如下:

    45岁以下

    45岁以上

    合计

    闯红灯人数

    5

    15

    20

    未闯红灯人数

    95

    85

    180

    合计

    100

    100

    200

    将统计数据所得频率视为概率,完成下列问题:

    1. (1) 将2×2列联表填写完整(不需要写出填写过程),并根据表中数据分析,在试行对闯红灯的行人进行经济处罚前,是否有90%的把握认为闯红灯行为与年龄有关;
    2. (2) 在试行对闯红灯的行人进行经济处罚后,闯红灯现象是否有明显改善,请说明理由;
    3. (3) 结合调查结果,请你对“如何治理行人闯红灯现象”提出合理的建议(至少提出两条建议).

      参考公式: ,其中 .

      参考数据:

      P(K2≥k0

      0.25

      0.15

      0.10

      0.05

      0.025

      0.010

      0.005

      0.001

      k0

      1.132

      2.072

      2.706

      3.841

      5.024

      6.635

      7.897

      10.828

  • 19. (2021·云南模拟) 如图,在四棱锥 中,四边形 为直角梯形, 的中点,且 .

    1. (1) 证明: 平面
    2. (2) 线段 上是否存在一点 ,使得二面角 的余弦值为 ?若存在,试确定点 的位置;若不存在,请说明理由.
  • 20. (2021·云南模拟) 已知抛物线 : 的准线经过椭圆 的一个焦点.
    1. (1) 求抛物线 的方程;
    2. (2) 过椭圆的右顶点且斜率为 的两条直线分别交抛物线 于点 ,点 分别是线段 , 的中点,若 ,求抛物线 的焦点 到直线 的距离的最大值.
  • 21. (2021·云南模拟) 函数 ,若 的两个极值点分别为 ,且满足 .
    1. (1) 求实数a的值;   
    2. (2) 若函数 有三个零点,求证: 的所有零点的绝对值都小于 .
  • 22. (2021·云南模拟) 已知在平面直角坐标系 中,直线l的参数方程为 为参数),以坐标原点 为极点, 轴的非负半轴为极轴建立极坐标系,曲线 的极坐标方程为 ,点 的极坐标是 .
    1. (1) 求直线l的极坐标方程及点 到直线l的距离;
    2. (2) 若直线l与曲线 交于 两点,求 的面积.
    1. (1) 当 时,求不等式 的解集;
    2. (2) 当 时,恒有 ,求实数 的取值范围.

微信扫码预览、分享更方便

试卷信息