当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

重庆市九龙坡区2021年数学中考模拟试卷

更新时间:2021-06-29 浏览次数:218 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 20. (2021·九龙坡模拟) 如图, ABC中,∠ACB=90°,∠B>∠A.

    1. (1) 用直尺和圆规在AC上确定一点D,∠BDC=2∠A,(不写作法,保留作图痕迹);
    2. (2) 若AB=10,BC=6,求CD长.
  • 21. (2021·九龙坡模拟) 中华鲟是国家一级保护动物,它是大型洄游性鱼类,生在长江,长在海洋,受生态环境的影响,数量逐年下降。中华鲟研究所每年定期通过人工养殖放流来增加中华鲟的数量,每年放流的中华鲟中有少数体内安装了长效声呐标记,便于检测它们从长江到海洋的适应情况,这部分中华鲟简称为“声呐鲟”,研究所收集了它们到达下游监测点A的时间t(h)的相关数据,并制作如下不完整统计图和统计表.

    已知:今年和去年分别有20尾“声呐鲟”在放流的96小时内到达监测点A,今年落在24<t≤48内的“声呐鲟”比去年多1尾,今年落在48<t≤72内的数据分别为49,60,68,68,71.去年20尾“声呐鲟”到达监测点A 所用时间t(h)的扇形统计图

     

    今年20尾“声呐鲟”到达监测点A所用时间t(h)的频数分布直方图

    关于“声呐鲟”到达监测点A所用时间t(h)的统计表

     

    平均数

    中位数

    众数

    方差

    去年

    64.2

    68

    73

    715.6

    今年

    56.2

    a

    68

    629.7

    1. (1) 请补全频数分布直方图,并根据以上信息填空:a=
    2. (2) 中华鲟到达海洋的时间越快,说明它从长江到海洋的适应情况就越好,请根据上述信息,选择一个统计量说明去年和今年中哪一年中华鲟从长江到海洋的适应情况更好;
    3. (3) 去年和今年该放流点共放流1300尾中华鲟,其中“声呐鲟”共有50尾,请估计今年和去年在放流72小时内共有多少尾中华鲟通过监测站A.
  • 22. (2021·九龙坡模拟) 已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.

    1. (1) 求点A的坐标.
    2. (2) 若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.
    3. (3) 结合图象,直接写出y1≤y2时x的取值范围.
  • 23. (2021·九龙坡模拟) 2020年是脱贫攻坚的关键年.为了让家乡早日实现脱贫目标,小伟利用网络平台帮助家乡销售特产“留香瓜”.已知小伟的家乡每年大约出产“留香瓜”600吨,利用网络平台进行销售前,人们主要依靠在本地自产自销和水果商贩上门收购,本地自产自销的价格为10元/千克,水果商贩上门收购的价格为8元/千克;利用网络平台进行销售后,因受网上销售火爆的影响,网上每销售100吨“留香瓜”,水果商贩的收购价将提高1元/千克.设网上销售价格为20元/千克,本地自产自销的价格仍然为10元/千克.
    1. (1) 利用网络平台进行销售前,小伟的家乡每年本地自产自销的总收入不超过卖给水果商贩收入的 ,求每年至少有多少吨“留香瓜”卖给了水果商贩?
    2. (2) 利用网络平台进行销售后,小伟的家乡每年销售“留香瓜”的总收入大约为920万元,其中本地自产自销“留香瓜”的销量按(1)问中的最大值计算,求每年在电商平台上销售了多少吨“留香瓜”?
  • 24. (2021·九龙坡模拟) 对任意一个三位正整数n,如果n满足百位上的数字小于十位上的数字,且百位上的数字与十位上的数字之和等于个位上的数字,那么称这个数n为“攀登数”.用“攀登数”n的个位数字的平方减去十位数字的平方再减去百位数字的平方,得到的结果记为 .例如: ,满足 ,且 ,所以123是“攀登数”, ;例如: ,满足 ,但是 ,所以236不是“攀登数”;再如: ,满足 ,但是 ,所以314不是“攀登数”.
    1. (1) 判断369和147是不是“攀登数”,并说明理由;
    2. (2) 若t是“攀登数”,且t的3倍与t的个位数字的和能被7整除,求满足条件的“攀登数”t以及 的最大值.
  • 25. (2021·九龙坡模拟) 已知抛物线y=﹣ x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.

    1. (1) 求抛物线的函数表达式和顶点B的坐标;
    2. (2) 如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);

      (i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;

      (ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.

  • 26. (2021·九龙坡模拟) 如图,在平面直角坐标系中,▱ABOC的顶点A(0,2),点B(﹣4,0),点O为坐标原点,点C在第一象限,若将△AOB沿x轴向右运动得到△EFG(点A、O、B分别与点E、F、G对应),运动速度为每秒2个单位长度,边EF交OC于点P,边EG交OA于点Q,设运动时间为t(0<t<2)秒.

    1. (1) 在运动过程中,线段AE的长度为(直接用含t的代数式表示);
    2. (2) 若t=1,求出四边形OPEQ的面积S;
    3. (3) 在运动过程中,是否存在四边形OPEQ为菱形?若存在,直接写出此时四边形OPEQ的面积;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息