当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省宁波市余姚市2021年数学中考一模试卷

更新时间:2021-07-13 浏览次数:300 类型:中考模拟
一、选择题(每小题4分,共40分.)
二、填空题(每小题5分,共30分}
三、解答题(本大题有8小题,共80分)
    1. (1) 化简:a(a﹣2)﹣(a+2)(a﹣2).
    2. (2) 解不等式: ≤3x+5.
  • 18. (2021·余姚模拟) 如图,由24个边长为1的小正方形组成的6×4的网格中,△ABC的顶点都在格点(小正方形的顶点)上.请在所给的网格中分别画一条线段DE,并同时满足如下条件:

    ①点D,E分别在BC,AC边上.

    ②点D,E都是格点.

    ③图1中满足DE= AB,图2中满足DE= AC.

  • 19. (2022七上·石阡期末) 某校随机抽取九年级部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,学校收集并整理数据后,将减压方式分为五类,并绘制了图1、图2两个不完整的统计图.请根据图中的信息解答下列问题:

    1. (1) 求该校九年级接受调查的人数并补全条形统计图.
    2. (2) 计算扇形统计图中的“体育活动”所对应的圆心角度数.
    3. (3) 若该校九年级有450名学生,请估计该校九年级学生中喜欢“听音乐”方式进行考前减压的人数.
  • 20. (2021·余姚模拟) 为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装红外线体温检测仪,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温(如图1),其红外线探测点O可以在垂直于地面的支杆OP上下调节(如图2),已知探测最大角(∠OBC)为58.0°,探测最小角(∠OAC)为26.6°.

    1. (1) 若该设备的安装高度OC为1.6米时,求测温区域的宽度AB.
    2. (2) 该校要求测温区域的宽度AB为2.53m,请你帮助学校确定该设备的安装高度OC.

      (结果精确到0.01m,参考数据:sin58.0°≈0.85,cos58.0°≈0.53,tan58.0°≈1.60,sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)

  • 21. (2021·余姚模拟) 如图,已知二次函数y= x2﹣x+c的图象经过点P(﹣3,6).

    1. (1) 求该二次函数的表达式.
    2. (2) 求该二次函数图象的顶点坐标.
    3. (3) 点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.
  • 22. (2021·余姚模拟) A.B两地相距200千米,早上8:00货车从A地出发将一批防疫物资运往B地,出发1.6小时后,货车出现了故障.货车离开A地的路程y(km)与时间x(h)的函数关系如图所示.

    1. (1) 求货车刚出发时候的速度.
    2. (2) 若货车司机经过48分钟维修排除了故障,继续运送物资赶往B地.

      ①应防疫需要,现要求该批次物资运到B地的时间不迟于当天中午12:00,那么货车的速度至少应该提速到多少?

      ②在货车从A地出发半小时后,A地派出了30名医务人员乘坐大巴车前往B地进行医疗支援.若货车在排除故障后以①中所求速度的最小值匀速赶往B地,大巴车的速度为50km/h.求大巴车在行进途中与货车相遇时,离B地还有多少千米?

  • 23. (2021·余姚模拟) 如果等腰三角形一边上的高线长恰好等于这边的长,那么称这个三角形为“优美三角形”,这条边为“优美边”.

    1. (1) 在如图1所示的12个小正方形组成的网格中,A,B两点在小正方形的顶点上,若点C也在小正方形的顶点上,且△ABC是“优美三角形”,请在图中各画一个满足条件的△ABC,并直接写出∠ABC的正切值.
    2. (2) 如图2,已知四边形ABCD是菱形,∠BAD=2α,点P,Q同时从B,D出发以相同的速度向终点C运动.

      ①当tanα=2,△APQ是“优美三角形”,且PQ为“优美边”时,求 的值.

      ②试探究P,Q在运动过程中(不含起点),tanα的范围与△APQ是“优美三角形”的个数之间的关系(不需要说明理由).

  • 24. (2021·余姚模拟) 如图1,在平面直角坐标系中,点A的坐标为(﹣2,2),B是x轴正半轴上一动点,以AB为直径画⊙C交x轴于点D,连接AO,过点A作AE⊥AO交⊙C于点E,连接BE,DE.

    1. (1) 求∠DBE的度数.
    2. (2) 求证:△ADE∽△OAB.
    3. (3) 如图2,连接CE,过点C作CF⊥BE于点F,过点F作FG∥CE交DE的延长线于点G,设点B的横坐标为t.

      ①用含t的代数式表示DE2.

      ②记S=DE•EG,求S关于t的函数表达式.

微信扫码预览、分享更方便

试卷信息