当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省绵阳三台县2021届九年级上学期数学12月月考试卷

更新时间:2021-06-26 浏览次数:182 类型:月考试卷
一、单选题
二、填空题
三、解答题
  • 19. (2020九上·三台月考) 解答下列各题.
    1. (1) 解下列方程: .
    2. (2) 先化简,再求值: ,其中 满足方程: .
  • 20. (2020九上·三台月考) 李老师为了了解班级学生自主学习、合作交流的具体情况,对九(1)班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C;一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图解答下列问题:

    1. (1) 本次调查中,李老师一共调查了名同学,其中女生共有名.
    2. (2) 将上面的条形统计图补充完整;
    3. (3) 为了共同进步,李老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请求所选两位同学恰好是一位男同学和一位女同学的概率.
  • 21. (2020九上·三台月考) 在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:


    (1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1 , 在坐标系中画出△A1B1C1 , 写出A1、B1、C1的坐标;
    (2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.
    (3)作出△ABC关于点O的中心对称图形△A2B2C2.

  • 22. (2022·云南模拟) 某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件

    1. (1) 如图,设第x(0<x≤20)个生产周期设备售价z万元/件,zx之间的关系用图中的函数图象表示,求z关于x的函数解析式(写出x的范围).
    2. (2) 设第x个生产周期生产并销售的设备为y件,yx满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂在第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)
  • 23. (2020九上·三台月考) 如图,在 中, .
    1. (1) 如图1,若 的中点,以 为圆心, 为半径作 于点 ,过 ,垂足为 .

      ①试说明: .

      ②判断直线 的位置关系,并说明理由.

    2. (2) 如图2,若点 沿 向点 移动,以 为圆心,以 为半径作 相切于点 ,与 相交于点 ,与 相交于点 ,垂足为 ,已知 的半径长为4, ,求切线 的长.

  • 24. (2020九上·三台月考) 如图1,已知抛物线 轴交于 两点, 点在 点的左侧,点 轴的负半轴上, ,点 为抛物线顶点,抛物线的对称轴 轴于点 ,连接 .过点 的直线 轴、 、抛物线分别交于点 .

    1. (1) 求抛物线的解析式.
    2. (2) ,点 的坐标为.
    3. (3) 如图2,连接 .

      ①证明:四边形 为菱形.

                  .
       

    4. (4) 平面内存在的点 使以 为顶点的四边形是平行四边形,请直接写出点 坐标.
  • 25. (2020九上·三台月考) 如图,在平面直角坐标系中,点 的坐标是 轴相切于点 ,与 轴相交于 两点.

    1. (1) 分别求 三点的坐标.
    2. (2) 如图1,设经过 两点的抛物线解析式为 ,它的顶点为 ,求证:直线 相切.
    3. (3) 如图2,过点 作直线 轴,与圆分别交于 两点,点 上任意一点(不与 重合),连接 的延长线于点 .请问 是否为定值,若为定值,请求出这个值,若不为定值,请说明理由.

微信扫码预览、分享更方便

试卷信息