欧几里得在《几何原本》中利用该图解释了 ,连结AC,记△ABC的面积为 ,图中阴影部分的面积为 .若 ,则 的值为 ( )
即:(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3
即:(a+b)(a2﹣ab+b2)=a3+b3①,我们把等式①叫做多项式乘法的立方和公式.
同理,(a﹣b)(a2+ab+b2)=a3﹣b3②,我们把等式②叫做多项式乘法的立方差公式.
请利用公式分解因式:﹣64x3+y3=.
(x−1)(x+1)=x²−1
(x−1)(x²+x+1)=x³−1
(x−1)(x³+x²+x+1)=x −1…
根据以上规律, 求1+2+2²+…+ .
常用的分解因式方法有提公因式、公式法等.但有的多项式只用上述方法就无法分解,如x2-4y2+2x-4y,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:
x2-4y2+2x-4y
=(x2-4y2)+(2x-4y) ……分组
=(x-2y)(x+2y)+2(x-2y) ……组内分解因式
=(x-2y)(x+2y+2) ……整体思想提公因式
这种分解因式的方法叫分组分解法。
第二环节:利用这种方法解决下列问题。
因式分解:x2y-4y-2x2+8.
第三环节:拓展运用。
已知a,b,c为△ABC的三边,且b2+2ab=c2+2ac,试判断△ABC的形状.
例如:利用配方法将x2﹣6x+8变形为a(x+m)2+n的形式,并把二次三项式分解因式.
配方:x2﹣6x+8
=x2﹣6x+32﹣32+8
=(x﹣3)2﹣1
分解因式:x2﹣6x+8
=(x﹣3)2﹣1
=(x﹣3+1)(x﹣3﹣1)
=(x﹣2)(x﹣4)
(解决问题)根据以上材料,解答下列问题: