当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省深圳市2021-2022学年九年级上学期期末数学试题

更新时间:2022-02-23 浏览次数:218 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 17. (2021九上·深圳期末) 小明为探究反比例函数y=的性质,他想先画出它的图象,然后再观察、归纳得到.

    1. (1) 他列出y与x的几组对应值如表:

      x

      ﹣4

      ﹣3

      ﹣2

      ﹣1

      ﹣0.5

      0.5

      1

      b

      3

      4

      y

      ﹣1

      a

      ﹣4

      ﹣8

      8

      4

      2

      1

      表格中,a=,b=

    2. (2) 结合表,在如图所示的平面直角坐标系xOy中,画出当x>0时的函数y的图象;
    3. (3) ①若(6,m),(10,n)在该函数的图象上,则mn(填“>”,“=”或“<”);

      ②若(x1 , y1),(x2 , y2)在该函数的图象上,且x1<x2<0,则y1y2(填“>”,“=”或“<”).

  • 18. (2021九上·深圳期末) 深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.
    1. (1) 张红选择A安全检查口通过的概率是 
    2. (2) 请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.
  • 19. (2021九上·深圳期末) 如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB于点F,DC=DE.

    1. (1) 求证:四边形CDEF是菱形;
    2. (2) 若BC=3,CD=5,求AG的长.
  • 20. (2023九上·钦州期末) 如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2

    1. (1) 求原正方形空地的边长;
    2. (2) 在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2 , 求小道的宽度.
  • 21. (2021九上·深圳期末) 【综合与实践】现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:

    ①根据光源确定榕树在地面上的影子;

    ②测量出相关数据,如高度,影长等;

    ③利用相似三角形的相关知识,可求出所需要的数据.

    根据上述内容,解答下列问题:

    1. (1) 已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;
    2. (2) 如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;
    3. (3) 无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为 米.
    1. (1) 【探究发现】

      如图①,已知四边形ABCD是正方形,点E为CD边上一点(不与端点重合),连接BE,作点D关于BE的对称点D',DD'的延长线与BC的延长线交于点F,连接BD′,D'E.

      ①小明探究发现:当点E在CD上移动时,△BCE≌△DCF.并给出如下不完整的证明过程,请帮他补充完整.

      证明:延长BE交DF于点G.

      ②进一步探究发现,当点D′与点F重合时,∠CDF=      ▲ °.

    2. (2) 【类比迁移】

      如图②,四边形ABCD为矩形,点E为CD边上一点,连接BE,作点D关于BE的对称点D',DD′的延长线与BC的延长线交于点F,连接BD',CD',D'E.当CD'⊥DF,AB=2,BC=3时,求CD'的长;

    3. (3) 【拓展应用】

      如图③,已知四边形ABCD为菱形,AD= , AC=2,点F为线段BD上一动点,将线段AD绕点A按顺时针方向旋转,当点D旋转后的对应点E落在菱形的边上(顶点除外)时,如果DF=EF,请直接写出此时OF的长.

微信扫码预览、分享更方便

试卷信息