当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

安徽省合肥市瑶海区2022年中考一模数学试题

更新时间:2022-04-21 浏览次数:161 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 16. (2022·瑶海模拟) 先化简、再求值: , 其中x=-
  • 17. (2022·瑶海模拟) 如图,在平面直角坐标系中,ΔABC三个顶点的坐标分别为A(-3,-1),B (-4,-4),C(-1,-3)

    ⑴以O为旋转中心,将△ABC顺时针旋转90°得到△A1B1C1

    ⑵以O为对称中心,作出△ABC关于点O的中心对称图形ΔA2B2C2

  • 18. (2022·瑶海模拟) 在数学探究课上,老师布置如下活动:用若干个大小一样的小矩形拼成一个大矩形,探究图中包含的矩形(含正方形)个数,如图1,是由两个小矩形组成的一个图形,该图中共有3个矩形.尝试解决以下问题:

    1. (1) 图2是由4个小矩形组成的图形,该图中共有个矩形;图3是由6个小矩形组成的图形,该图中共有个矩形;
    2. (2) 小军在与同学探究时发现,矩形的个数与最大矩形的长和宽所包含的线段条数有关.如图4,最大矩形的长包含6条线段,宽也包含6条线段,则该图中共有个矩形;若某大矩形是由mn个矩形组成,则该图中共有个小矩形;(备注:1+2+3+……+n=
  • 19. (2022·瑶海模拟) 如图,直线y1=mx与双曲线y2交于点A、B,过点A作AP⊥x轴,垂足点P的坐标是(-2,0),连接BP,且SΔABP=2.

    1. (1) 求反比例函数的解析式;
    2. (2) 当y1>y2时,求x的取值范围
  • 20. (2022·瑶海模拟) 已知:RtΔACB中, ∠C=90°,以AC为直径的⊙O交AB于E,点F为弧EC的中点,OF的延长线交CB于D.

    1. (1) 求证:CD=BD;
    2. (2) 连接EC交OD于G,若AC=6、CD=4,求GF的长.
  • 21. (2022·瑶海模拟) 北京冬奥会正式比赛项目冬季两项是融滑雪和射击于一体的项目,要求运动负滑行一段时间再进行射击,对运动员的体能和稳定性都是极大的考验.某冬季两项集训队为了解运动员滑雪后射击的准确性,从甲、乙两个队分别抽了40名运动员进行了模拟测试,并将他们滑雪10公里后的射击成绩进行了整理、描述和分析,下面给出了部分信息.(说明:成绩8.0~10环及以上为优秀;7.0~7.9环为良好;6.0~6.9环为合格;6.0 环以下为不合格).

    ①甲队运动员成绩的频数分布直方图如下图所示(数据分为五组:5≤x<6;6≤x<7;7≤x<8;8≤x<9;9≤x≤10)

    ②甲队运动员射击成绩在7≤x<8这一组的是:7、7.1、7.3,7.3、7.3、7.4、7.6、7.7、7.8、7.9;

    ③乙队运动员的成绩中没有3人相同,其平均数、中位数、众数、优秀率如下:

    平均数

    中位数

    众数

    优秀率

    7.9

    7.6

    8.4

    40%

    根据以上信息,回答下列问题:

    1. (1) 求甲队运动员射击成绩在7≤x<8这组数据的中位数和众数;
    2. (2) 成绩是7.6环的运动员,在哪个队里的名次更好些?请说明理由;
    3. (3) 根据上述信息,推断队运动员滑雪后射击状态状况更好, 理由为(至少从两个不同的角度说明推断的合理性)
  • 22. (2022·瑶海模拟) 已知:抛物线y=-x2+kx+k+1(k>1)与x轴交于A、B两点,(点A在点B的左侧),与y轴交于点C.
    1. (1) k=2时,求抛物线的顶点坐标;
    2. (2) 若抛物线经过一个定点,求这个定点的坐标;
    3. (3) 点P为抛物线上一点,且位于直线BC上方,过点P作PF∥y轴,交BC于点F,求PF长度的最大值(用含k式子表示).
  • 23. (2022·瑶海模拟) 已知:矩形ABCD中,E为BC中点,AE⊥BD于F,AB=2

    1. (1) 求证:DF=2BF
    2. (2) 求CF的长;
    3. (3) 延长CF交AB于点H,将△BCF沿直线CH翻折为△B′FC,B′C交BD于点G,延长CB′交AD于点M,求的值.

微信扫码预览、分享更方便

试卷信息