小娜根据学习函数的经验,对函数 的图象与性质进行了探究.下面是小娜的探究过程,请补充完整:
x |
… |
-2 |
-1 |
0 |
1 |
2 |
| 3 | … |
y | … | -8 | -3 | 0 | m | n | 1 | 3 | … |
请直接写出:m=,n=;
已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍 ,图书馆离宿舍 .周末,小亮从宿舍出发,匀速走了 到食堂;在食堂停留 吃早餐后,匀速走了 到图书馆;在图书馆停留 借书后,匀速走了 返回宿舍,给出的图象反映了这个过程中小亮离宿舍的距离 与离开宿舍的时间 之间的对应关系.
请根据相关信息,解答下列问题:
离开宿舍的时间/ | 2 | 5 | 20 | 23 | 30 |
离宿舍的距离/ | 0.2 |
| 0.7 |
|
|
①食堂到图书馆的距离为 .
②小亮从食堂到图书馆的速度为 .
③小亮从图书馆返回宿舍的速度为 .
④当小亮离宿舍的距离为 时,他离开宿舍的时间为 .
(Ⅰ)如图①,求点E的坐标;
(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C , O , D , E的对应点分别为C′,O′,D′,E′.设OO′=t , 矩形C′O′D′E′与△ABO重叠部分的面积为S .
①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M , F , 试用含有t的式子表示S , 并直接写出t的取值范围;
②当 ≤S≤5 时,求t的取值范围(直接写出结果即可).
②在①成立的情况下,x轴上是否存在一点P,使△AOP是等腰三角形?若存在,请写出满足条件的三个P点坐标即可;若不存在,请说明理由。