一、选择题:(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.
-
A . x=3
B . x>0
C . x≥3
D . x>-3
-
-
-
A . 7和8之间
B . 8和9之间
C . 9和10之间
D . 10和11之间
-
A . 6,8,10
B . 2,3,4
C . 1,5,
D . 2,2,
-
A . -2
B . -2.2
C .
D . 1-
-
7.
(2022八下·江津期中)
如图,一客轮以16海里/时的速度从港口
A出发向东北方向航行,另一客轮同时以12海里/时的速度从港口
A出发向东南方向航行,离开港口2小时后,则两船相距( )
A . 25海里
B . 30海里
C . 35海里
D . 40海里
-
A . 对角线互相平分的四边形是平行四边形
B . 有一组对边平行,另一组对边相等的四边形是平行四边形
C . 两组对边分别相等的四边形是平行四边形
D . 有两组对角相等的四边形是平行四边形
-
9.
(2022八下·江津期中)
如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为( )
A . 13
B . 17
C . 20
D . 26
-
10.
(2022八下·江津期中)
如图,一圆柱高8cm,底面半径为
cm,一只蚂蚁从点A沿圆柱侧面爬到点B处吃食,要爬行的最短路程是( )
A . 6cm
B . 8cm
C . 10cm
D . 12cm
-
11.
(2022八下·江津期中)
如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.如果AD=5cm,AP=8cm,则△ABP的面积等于( )cm
2 .
A . 24
B . 30
C . 6
D . 12
-
12.
(2022八下·江津期中)
将从1开始的一组数按如图的规律排列:规定位于第m行第n列是的数记为(m,n)例如
记为(4,2),按此规律,
记为( )
|
第1列
|
第2列
|
第3列
|
第4列
|
第1行
|
1
|
|
|
2
|
第2行
|
|
|
|
|
第3行
|
3
|
|
|
|
第4行
|
4
|
|
|
|
……
|
……
|
……
|
……
|
……
|
A . (506,2)
B . (506,3)
C . (505,2)
D . (505,3)
二、填空题: (本大题共4小题,每小题4分,共16分)将每小题的答案直接 填写在答题卡中对应的横线上.
-
-
-
-
16.
(2022八下·江津期中)
如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE。若AB=4,BC=3,则△ADC的周长是
三、解答题(每小题8分,共16分)请将解答过程书写在答题卡中对应的位置上.
-
-
-
(1)
尺规作图:作∠BAD的平分线交CD于点F.(保留作图痕迹,不写作法,不写结论)
-
(2)
在(1)所作的图形中,BE与AF交于点P,求证:△ABP为直角三角形
四、解答题(每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.
-
-
-
-
(2)
猜想:△ABC是什么特殊三角形,并证明你的猜想。
-
21.
(2022八下·江津期中)
如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.
-
-
-
22.
(2024八下·防城月考)
台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向
由
行驶向
,已知点
为一海港,且点
与直线
上的两点
,
的距离分别为
,
,又
,以台风中心为圆心周围
以内为受影响区域.
-
(1)
求
的度数.
-
(2)
海港
受台风影响吗?为什么?
-
(3)
若台风的速度为20千米/小时,当台风运动到点
处时,海港
刚好受到影响,当台风运动到点
时,海港
刚好不受影响,即
,则台风影响该海港持续的时间有多长?
-
23.
(2022八下·江津期中)
在数学课外学习活动中,小明和他的同学遇到一道题:
已知a= ,求2a2-8a+1的值.他是这样解答的:
∵a=
∴a-2=
∵(a-2)2=3,a2-4a+4=3.
∴a2-4a=-1.
∴2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.
请你根据小明的解题过程,解决如下问题:
-
(1)
=
-
(2)
化简
-
(3)
若a=
,求a
4-4a
3-4a+4的值.
-
24.
(2022八下·江津期中)
如图,在△ABC中,AB=AC=4,D,E分别为AB,AC的中点,连接CD,过点E作EF∥DC交BC的延长线于点F。
-
-
-
-
-
-
(3)
在x轴上有一点D,使△ABD为等腰三角形,直接写出点D的坐标。