当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省聊城市高唐县2022年中考一模数学试题

更新时间:2022-05-16 浏览次数:87 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 18. (2022·高唐模拟) 不等式组
    1. (1) 解此不等式组;
    2. (2) 若m是此不等式组的最大整数解,求的值.
  • 19. (2022·高唐模拟) 为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.
    1. (1) 求甲、乙两种消毒液的零售价分别是每桶多少元?
    2. (2) 由于疫情防控进入常态化,该单位需再次购买两种消毒液共300桶,且甲种消毒液的桶数不少于乙种消毒液桶数的 ,由于购买量大,甲、乙两种消毒液分别获得了20元/桶,15元/桶的批发价.求甲种消毒液购买多少桶时,所需资金总额最少?最少总金额是多少元?
  • 20. (2022·高唐模拟) 时代中学为了解学生对中国共产党党史知识的学习情况,在七年级和八年级举行了有关党史知识测试活动.现从七、八两个年级中各随机抽取20名学生的测试成绩(满分50分,30分及30分以上为合格;40分及40分以上为优秀)进行整理、描述和分析,给出了下面的部分信息.

    七年级20名学生的测试成绩为:39,50,39,50,49,30,30,49,49,49,43,43,43,37,37,37,43,43,37,25.

    八年级20名学生的测试成绩条形统计图如图所示;两个年级抽取的学生的测试成绩的平均数、众数、中位数、优秀率如表所示:

    年级

    平均数

    众数

    中位数

    优秀率

    41.1

    a

    43

    m

    39.5

    44

    b

    n

    请你根据上面提供的所有信息,解答下列问题:

    1. (1) 表中      ▲       ▲       ▲       ▲  . 根据样本统计数据,你认为该七、八年级中哪个年级学生掌握党史知识较好?并说明理由.(写一条理由即可)
    2. (2) 已知该中学七、八年级共1240名学生参加了此次测试活动,通过计算,估计参加此次测试活动成绩合格的学生人数能否超过1000.
    3. (3) 从样本中测试成绩为满分的七、八年级的学生中随机抽取两名学生,用列表或树状图法求两人在同一年级的概率.
  • 21. (2022·高唐模拟) 如图,在矩形ABCD中,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.

    1. (1) 求证:FH=ED;
    2. (2) 若AB=3,AD=5,当AE=1时,求∠FAD的度数.
  • 22. (2022·高唐模拟) 如图所示的是一款机械手臂,由上臂、中臂和底座三部分组成,其中上臂和中臂可自由转动,底座与水平地面垂直.在实际运用中要求三部分始终处于同一平面内,其示意图如图1所示,经测量,上臂 , 中臂 , 底座

    1. (1) 若上臂AB与水平面平行, . 计算点A到地面的距离.
    2. (2) 在一次操作中,中臂与底座成夹角,上臂与中臂夹角为 , 如图2,计算这时点到地面的距离.与图1状态相比,这时点A向前伸长了多少?
  • 23. (2022·高唐模拟) (已知在直角坐标系中,点A是反比例函数图象上的一个动点,连接AO并延长线交反比例函数的图象于点B,过点A作轴于点E.

    1. (1) 如图1,过点B作轴于点F,连接EF,BE,若 , 求△BOE的面积.
    2. (2) 如图2,过点E作 , 交反比例函数的图象于点P,连接OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.
  • 24. (2022·高唐模拟) 如图,四边形内接于为直径,点的延长线上,的延长线交于点

    1. (1) 求证:的切线;
    2. (2) 若 , 求的长.
  • 25. (2022·高唐模拟) 如图1,在平面直角坐标系中,抛物线y=-x+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D.

    1. (1) 求直线BC的解析式;
    2. (2) 如图2,点P为直线BC上方抛物线上一点,连接PB、PC.当的面积最大时,在线段BC上找一点E(不与B、C重合),使BE的值最小,求点P的坐标和BE的最小值;
    3. (3) 如图3,点G是线段CB的中点,将抛物线y=-x+沿x轴正方向平移得到新抛物线 , y′经过点D,的顶点为F.在抛物线的对称轴上,是否存在一点Q,使得为直角三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息