当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省东营市东营区2022年中考一模数学试题

更新时间:2022-05-19 浏览次数:95 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 计算:
    2. (2) 先化简.再求值: , 并从-2,-1,0,1中选一个合适的数作为x的值代入求值.
  • 20. (2022·东营模拟) 东营市某小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗;B类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种.图1与图2是根据此次调查得到的统计图(不完整).

    请根据统计图回答下列问题:

    1. (1) 此次抽样调查的人数是多少人?
    2. (2) 接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?
    3. (3) 请估计该小区所居住的3000名居民中有多少人进行了新冠疫苗接种.
    4. (4) 为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少?
  • 21. (2022·东营模拟) 如图,在Rt△ABC中,∠ACB=90°,点E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.

    1. (1) 判断直线DE与⊙O的位置关系,并说明理由;
    2. (2) 若CD=6,DE=5,求⊙O的直径.
  • 22. (2022·东营模拟) 疫情爆发,某企业准备转型生产口罩.该企业在市场上物色到两种生产口罩的设备,若采购2台型设备,5台型设备则共需要430万元;若采购5台型设备,2台型设备则共需要550万元.已知型设备每台每天可以生产19万片口罩;型设备每台每天可以生产8万片口罩.
    1. (1) 求两型设备的采购单价分别是多少万元/台?
    2. (2) 该企业准备采购两型设备共10台,但能用来采购设备的资金不超过700万元,那么如何安排采购方案,用这些设备每天生产的口罩最多?每天最多可生产多少万片口罩?
  • 23. (2022九上·道县期中) 如图,已知一次函数 与反比例函数 的图象在第一、三象限分别交于 两点,连接 .

    1. (1) 求一次函数和反比例函数的解析式;
    2. (2) 的面积为
    3. (3) 直接写出 时x的取值范围.
  • 24. (2022·东营模拟) 如图,已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,连接BC.

    1. (1) 求抛物线的解析式;
    2. (2) 若点P为线段BC上的一动点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求点P的坐标;
    3. (3) 在(2)的条件下,当△BCM的面积最大时,点D是抛物线的对称轴上的动点,在抛物线上是否存在点E,使得以A、P、D、E为顶点的四边形为平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.
  • 25. (2022·东营模拟) 点E是矩形ABCD边AB延长线上的一动点,在矩形ABCD外作Rt△ECF,其中 , 过点F作FG⊥BC,交BC的延长线于点G,连接DF,交CG于点H.

    1. (1) 发现:如图1,若 , 猜想线段DH与HF的数量关系是
    2. (2) 探究:如图2,若 , 则(1)中的猜想是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
    3. (3) 拓展:在(2)的基础上,若射线FC过AD的中点, , 请你计算CE的长度.

微信扫码预览、分享更方便

试卷信息