当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省温州市泰顺县2022年九年级中考模拟考试数学试卷

更新时间:2024-07-13 浏览次数:293 类型:中考模拟
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
二、填空题(本题有6小题,每小题5分,共30分)
三、解答题(本题有8小题,共80分解答需写出必要的文字说明、演算步骤或证明过程)
    1. (1) 计算:-2×3+ -20220+|4|
    2. (2) 化简:
  • 18. (2022·泰顺模拟) 已知,如图,点B,E,D,C在同一直线上,AB=AC,AD=AE.
    1. (1) 求证:BE=CD.

      针对这道题,三位同学进行如下讨论;

      兰兰:“由AB=AC得∠B=∠C,又因为AE=AD,

      通过证明△ABE≌△ACD,可得"

      花花;“兰兰的全等条件是‘边边角'。不能证明全等,

      但我用‘角角边'可证△ABE≌ACD."

      草草:“还可证明△ABD≌△ACE得BD=CE.再得BE=CD:但图中有两个等腰三角形,我认为最简洁的方法是用'三线合一'的性质证明."

      请你结合上述讨论,选择恰当的方法完成证明.

    2. (2) 若∠BAC=90°,ED=4,BE=2,求AB的长.
  • 19. (2022·泰顺模拟) 基于对“校园落叶变废为宝"的研究,某科学兴趣小组在校内的“猕猴桃种植基地”进行落叶堆肥实验。控制猕猴桃其它生长条件不变,其中一半的猕猴桃植株施落叶肥料(甲组),另一半植株只用无机肥(乙组).进入猕猴桃的收获期时,为研究落叶堆肥实验的效果,从两组中各随机摘取50个猕猴桃,测量单果质量x(g).现将测量结果分成5组,A:40≤x<60,B:60≤x <80,C:80≤x<100, D:100≤x<120, E:120x<140,并绘制成如下统计图.其中100g及以上的果子,称为优质大果,更受市场欢迎.

    1. (1) 填写以下表格.
       

      平均数

      中位数

      大果率

      方差

      甲组

      (    )

      落(   )组

      (   )

      7.04

      乙组

      79.6

      落B组

      20%

      23.64

    2. (2) 结合平均数、中位数、大果串、方差进行分析,多角度评价“落叶堆肥"的实际效果.
  • 20. (2022·泰顺模拟) 如图,在所给的方格纸中,每个小正方形边长都是1,点A,B位于格点处.

    1. (1) 在图1中画出格点△ABC,使AC2+BC2=6.
    2. (2) 在图2中画出格点四边形AEBF,使四边形AEBF的对角线互相垂直平分.
  • 21. (2022·泰顺模拟) 已知抛物线y=-x2+bx+c经过点(0,2)与(2,0).
    1. (1) 求该抛物线的函数关系式.
    2. (2) 此抛物线向下平移m个单位后,顶点落在直线y=2r上,求平移后抛物线与y轴的交点坐标.
  • 22. (2022·泰顺模拟) 如图,锐角△ABC内接于⊙O,AB=AC,BD为直径,过点B作BF⊥AB交⊙O于点E,交DC的延长线于点F.

    1. (1) 求证:∠ABD=∠CBF.
    2. (2) 连结DE,若DE=20,sin∠A= ,求BF的长.
  • 23. (2022·泰顺模拟) 猕猴桃被誉为“维C之王”,其中含血清促进素可以稳定情绪,丰富膳食纤维能促进心脏健康.在泰顺猕猴桃销售旺季时,爸爸妈妈让他们的两个孩子泰泰与顺顺去猕猴桃市场采购相同价格的同一种猕猴桃.泰泰用240元买的猕猴桃数量比顺顺用300元买的猕猴桃数量少10斤.

    1. (1) 求这种猕猴桃的单价.
    2. (2) 两人第二次再去采购该种猕猴桃时,每斤单价比上次少了2元.两个人购买方案不同如图所示.他们想通过这两次购买体验,作为数学项目化学习的一个素材,探究谁的购买方案更加合算.计算得泰泰两次购买的猕猴桃平均价格是元/斤,顺顺两次购买的猕猴桃平均价格是元/斤.
    3. (3) 泰泰和顺顺通过这次购买弥猴桃的项目化学习,总结出连续购买某种商品更合算的方案,并迁移联想到爸爸的加油习惯是按照同样的金额加油,而妈妈总是说"把油箱加满"。他们要建议父母按相同的           (填“金额”或“油量")加油更合算.请你通过计算说明理由.
  • 24. (2022·泰顺模拟) 在矩形ABCD中,BC=2AB,点E是对角线AC上任意一点,过点E作AD的垂线分别交AD,BC于点F,G,作FH平行AC交CD于点H.

    1. (1) 证明:EF=CH.
    2. (2) 连结GH交AC于点K,若AE:CK=3,求AE:EK的值.
    3. (3) 作△FGH的外接圆⊙O,且AB=1.

      ①若⊙O与矩形的边相切时,求CH的长.

      ②作点E关于GH的对称点E',当E'落在⊙O上时,直接写出△FGH的面积。

微信扫码预览、分享更方便

试卷信息