当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2012年高考理数真题试卷(江西卷)

更新时间:2021-05-20 浏览次数:254 类型:高考真卷
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
二、填空题
三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分
    1. (1) (坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2﹣2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为

    2. (2) (不等式选做题)在实数范围内,不等式|2x﹣1|+|2x+1|≤6的解集为

四、解答题.解答应写出文字说明、证明过程或演算步骤.
  • 16. (2012·江西理) 已知数列{an}的前n项和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值为8.
    1. (1) 确定常数k,求an
    2. (2) 求数列 的前n项和Tn
  • 17. (2012·江西理) 在△ABC中,角A,B,C的对边分别为a,b,c.已知A= ,bsin( +C)﹣csin( +B)=a,
    1. (1) 求证:B﹣C=
    2. (2) 若a= ,求△ABC的面积.
  • 18. (2012·江西理) 如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).

    1. (1) 求V=0的概率;
    2. (2) 求V的分布列及数学期望EV.
  • 19. (2012·江西理) 在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,点A1在底面ABC的投影是线段BC的中点O.

    1. (1) 证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
    2. (2) 求平面A1B1C与平面BB1C1C夹角的余弦值.
  • 20. (2012·江西理) 已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足| + |= •( + )+2.
    1. (1) 求曲线C的方程;
    2. (2) 动点Q(x0 , y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.
  • 21. (2012·江西理) 若函数h(x)满足

    ①h(0)=1,h(1)=0;

    ②对任意a∈[0,1],有h(h(a))=a;

    ③在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)= (λ>﹣1,p>0)

    1. (1) 判函数h(x)是否为补函数,并证明你的结论;

    2. (2) 若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p= (n∈N+)时h(x)的中介元为xn , 且Sn= ,若对任意的n∈N+ , 都有Sn ,求λ的取值范围;

    3. (3) 当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1﹣x的上方,求P的取值范围.

微信扫码预览、分享更方便

试卷信息