当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省阳泉市2022年中考考前教学质量检测(一模)数学试题

更新时间:2022-07-25 浏览次数:66 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 16. (2022·阳泉模拟) 计算及先化简求值
    1. (1)
    2. (2) 先化简 , 再选一个合适的x的值代入求值.
  • 17. (2022·阳泉模拟) 如图,点O为Rt△ABC的斜边BC上一点,以点O为圆心、OC为半径的⊙O与边AB相切于点D,与边AC,BC分别相交于点E,F,连接OE,DE,DF.

    1. (1) 求证:DE=DF;
    2. (2) 若∠B=30°,⊙O的半径为8,求AC的长.
  • 18. (2022·阳泉模拟) 某校组织了九年级学生进行“汉字听写大赛”,据统计,所有学生的比赛成绩均超过60分,最高分为100分.比赛的成绩分以下四个等级:A(),B(),C(),D()(单位:分).现随机抽取了九年级若干名学生的比赛成绩,绘制出如下不完整的统计图.请你结合以上信息,解答下列问题:

    1. (1) 请补全比赛成绩直方图;
    2. (2) 针对本次统计结果,以下三位同学做出如下判断:

      小强认为:中位数落在B组;

      小明认为:众数落在C组;

      小亮认为:若C组有a人,则可估算平均成绩约为:

      以上判断中有一位同学是错误的 , 这位同学是(填“小强”、“小明”或“小亮”);

    3. (3) 若该校九年级共1000名学生,测试成绩高于80分记为“优秀”,请你估计该校九年级学生中汉字听写比赛成绩达到“优秀”的人数.
    4. (4) 学校要求,各班需推荐一男一女两名学生参加总决赛,九年级(2)班班主任要在本班前五名同学(包括两名男生和三名女生)中进行推选,请用列表或树状图求恰好能按要求推选的概率是多少?
  • 19. (2022·阳泉模拟) 健康绿色生活,从饮用水开始!随着科技的发展和生活质量的不断提高,人们的自我保健意识也不断增强,对饮水品质的需求也越来越高.我市某公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.
    1. (1) 求每台A型、B型净水器的进价各是多少元?
    2. (2) 该公司计划购进A、B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B型净水器每台售价2180元,该公司决定从销售A型净水器的利润中按每台捐献75元作为公司帮扶贫困村饮水改造资金,设该公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.
  • 20. (2022·阳泉模拟) 随着科技的发展,越来越多高科技的产品应用在我们的生活中,智能跟踪监控摄像头就是其中的一种(如图1).一款被安装在某小区住宅楼铅直墙面l上A处的跟踪摄像头,在捕捉到地面上E处有一跟踪目标时,数据显示该目标到摄像头水平距离BE=8m,此时摄像头的俯视角度为35°;继续跟踪目标到达围墙CD的墙头D处,此时摄像头俯视角度减小了15°.已知围墙CD的铅直高度为1.8m,请求出目标落脚点D到墙面l的水平距离(结果保留到0.1m).(参考数据:

  • 21. (2022·阳泉模拟) 阅读下列材料,完成相应的学习任务.

    巧折黄金矩形

    如果一个矩形宽与长的比为 , 那么这样的矩形叫做黄金矩形.

    我们可以用如下方法折出黄金矩形:

    如图,在矩形纸片ABCD中,AD=2.

    操作1:将矩形纸片ABCD沿AF折叠,使得点D落在AB上的点E处,

    展开得到折痕AF;

    操作2:再将该矩形纸片折叠,使得点D与点F重合,展开得到折痕GH;

    操作3:继续折叠该纸片,使得AG落在DC上,点A的对应点为点M,

    点D的对应点为点P,折痕为GQ;

    操作4:过点M折出DC的垂线,折痕为MN.

    则四边形FENM是黄金矩形.

    学习任务:

    1. (1) 请你证明四边形FENM是黄金矩形;
    2. (2) 在不添加其他字母的情况下,请你再写出图中的一个黄金矩形.(参考数据:
  • 22. (2022·阳泉模拟) 综合与实践

    【问题背景】

    如图1,平行四边形ABCD中,∠B=60°,AB=6,AD=8.点E、G分别是AD和DC边的中点,过点E、G分别作DC和AD的平行线,两线交于点F,显然,四边形DEFG是平行四边形.

    【独立思考】

    1. (1) 线段AE和线段CG的数量关系是:
    2. (2) 将平行四边形DEFG绕点D逆时针旋转,当DE落在DC边上时,如图2,连接AE和CG.

      ①求AE的长;

      ②猜想AE与CG有怎样的数量关系,并证明你的猜想;

    3. (3) 【问题解决】

      将平行四边形DEFG继续绕点D逆时针旋转,当A,E,F三点在同一直线上时(如图3),AE与CG交于点P,请直接写出线段CG的长和∠APC的度数.

  • 23. (2022·阳泉模拟) 综合与探究

    如图,已知抛物线与x轴负半轴交于点 , 与y轴交于点 , 抛物线的顶点为D,直线y=x+b与抛物线交于A,F两点,过点D作DE∥y轴交直线AF于点E.

    1. (1) 求抛物线和直线AF的解析式;
    2. (2) 在直线AF上方的抛物线上有一点P,使 , 求点P的坐标;
    3. (3) 若点M为抛物线上一动点,试探究在直线AF上是否存在一点N,使得以D,E,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息