当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省历年(2018-2022年)真题分类汇编专题16 二次...

更新时间:2022-08-14 浏览次数:101 类型:二轮复习
一、单选题
  • 1. (2024九上·诸暨月考) 已知抛物线 y=x2+mx的对称轴为直线 x=2 ,则关于x的方程 x2+mx=5的根是(    )
    A . 0,4 B . 1,5 C . 1,-5 D . -1,5
  • 2. (2024·金华月考) 已知 均是以 为自变量的函数,当 时,函数值分别是 ,若存在实数 ,使得 ,则称函数 具有性质P。以下函数 具有性质P的是(   )
    A . B . C . D .
  • 3. (2024九下·湖北模拟) 在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac。设函数y1 , y2 , y3的图象与x轴的交点个数分别为M1 , M2 , M3 , ( )
    A . 若M1=2,M2=2,则M3=0 B . 若M1=1,M2=0,则M3=0 C . 若M1=0,M2=2,则M3=0 D . 若M1=0,M2=0,则M3=0
  • 4. (2019·嘉兴) 小飞研究二次函数 ( 为常数)性质时如下结论:

    ①这个函数图象的顶点始终在直线 上;②存在一个 的值,使得函数图象的顶点与 轴的两个交点构成等腰直角三角形;③点 与点 在函数图象上,若 ,则 ;④当 时, 的增大而增大,则 的取值范围为 其中错误结论的序号是(    )

    A . B . C . D .
  • 5. (2022九上·舟山月考) 在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是( )
    A . a≤﹣1或 ≤a< B . ≤a< C . a≤ 或a> D . a≤﹣1或a≥
二、作图题
  • 6. (2020·成华模拟) 某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:

    x(元)

    190

    200

    210

    220

    y(间)

    65

    60

    55

    50

    1. (1) 根据所给数据在坐标系中描出相应的点,并画出图象。
    2. (2) 求y关于x的函数表达式、并写出自变量x的取值范围.
    3. (3) 设客房的日营业额为w(元)。若不考虑其他因素,问宾馆标准房的价格定为多少元时。客房的日营业额最大?最大为多少元?
三、综合题
  • 7. 在直角坐标系中,设函数 是常数, )。
    1. (1) 若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;
    2. (2) 写出一组a、b的值,使函数y=ax2+bx+1的图象与x轴有两个不同的交点,并说明理由.
    3. (3) 已知 ,当 是实数, )时,该函数对应的函数值分别为P,Q。若 ,求证:P+Q>6 。
  • 8. (2021·温州) 已知抛物线 经过点 .
    1. (1) 求抛物线的函数表达式和顶点坐标.
    2. (2) 直线 交抛物线于点 为正数.若点 在抛物线上且在直线 下方(不与点 重合),分别求出点 横坐标与纵坐标的取值范围,
  • 9. (2021·湖州) 如图,已知经过原点的抛物线 与x轴交于另一点A(2,0)。

    1. (1) 求m的值和抛物线顶点M的坐标;
    2. (2) 求直线AM的解析式。
  • 10. (2020·杭州) 在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0)。
    1. (1) 若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式。
    2. (2) 若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点( ,0)。
    3. (3) 若函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值。
  • 11. (2021九上·鹿城月考) 如图,在平面直角坐标系中,二次函数 的图象交x轴于点A,B(点A在点B的左侧).

    1. (1) 求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围;
    2. (2) 把点B向上平移m个单位得点B1 . 若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求mn的值.
  • 12. (2018·温州) 如图,抛物线 轴正半轴于点A,直线 经过抛物线的顶点M.已知该抛物线的对称轴为直线 ,交 轴于点B.

    1. (1) 求a,b的值.
    2. (2) P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为 ,△OBP的面积为S,记 .求K关于 的函数表达式及K的范围.
  • 13. (2018·舟山) 已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B。

    1. (1) 判断顶点M是否在直线y=4x+1上,并说明理由。
    2. (2) 如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)2+4b+1,根据图象,写出x的取值范围。
    3. (3) 如图2,点A坐标为(5,0),点M在△AOB内,若点C( ,y1),D( ,y2)都在二次函数图象上,试比较y1与y2的大小。
  • 14. (2018·衢州) 某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为批物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系。

    1. (1) 求水柱所在抛物线(第一象限部分)的函数表达式;
    2. (2) 王师傅在水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
    3. (3) 经检修评估,游乐园决定对喷水设施做如下设计改进;在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后水热水柱的最大高度。
  • 15. (2022·舟山) 已知抛物纸L1:y=a(x+1)2-4(a≠0)经过点A(1,0)。
    1. (1) 求抛物线L1的函数表达式。
    2. (2) 将抛物线L1向上平移m(m>0)个单位得到抛物线L2 , 若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
    3. (3) 把抛物线L1向右平移n(n>0)个单位得到抛物线L3 , 已知点P(8-t,s),Q(t-4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.

微信扫码预览、分享更方便

试卷信息