当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省抚州市2021-2022学年九年级上学期期末数学试题

更新时间:2022-12-08 浏览次数:73 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 13. (2021九上·抚州期末)             
    1. (1) 计算:2sin30°-tan45°.
    2. (2) 用适当的方法解一元二次方程:x2-2x-1=0.
  • 14. (2021九上·抚州期末) 已知 , 且a+3b-2c=15,求a+b-c的值.
  • 15. (2021九上·抚州期末) 已知关于x的一元二次方程x2-6x+m-3=0的两个根为a,b.
    1. (1) 若a,b分别为矩形的两条对角线的长,求m的值;
    2. (2) 若a,b分别是菱形的两条对角线的长,且菱形的面积为4,求m的值.
  • 16. (2021九上·抚州期末) 如图,在平行四边形ABCD中,AB=4,BC=2,点F在BC的延长线上,AF与CD交于点E,且∠1=∠F,求CF和DE的长.

  • 17. (2021九上·抚州期末) 在如图中,A、B两点在反比例函数y=的图象上,AB过O点,△ABC是等边三角形,点D为AC的中点,请用无刻度的直尺按下列要求画图.

    1. (1) 在图1中,在x轴上画出点F,使四边形ADBF为矩形;
    2. (2) 在图2中,画出菱形ACBF.
  • 18. (2021九上·抚州期末) 2021年1月以来,教育部相继出台文件,对加强中小学生手机、睡眠、读物、作业、体质“五项管理”作出部署.抚州市某中学积极响应教育部的号召,对本校“五项管理”落实情况进行抽查,各年级分别抽查一项不同的管理项目.
    1. (1) 若先抽查九年级,则选到“作业”这项管理检查的概率是
    2. (2) 若先抽查九年级,恰好选到“作业”,用画树状图或列表的方法求七年级和八年级选到“手机”和“体质”两项管理的概率.
  • 19. (2021九上·抚州期末) 已知二次函数y=ax2+2x+c的图象经过点(1,4)和(0,3)两点,与x轴交于A、B两点(A点在B点的左侧).
    1. (1) 求二次函数的表达式及对称轴;
    2. (2) 若点P在此抛物线上,且在x轴上方,求△PAB的最大面积.
  • 20. (2021九上·抚州期末) 如图1是一种建筑行业用的小型吊机实物图,图2,图3是吊机的示意图,支架AB=150cm,吊杆AM=200cm,∠ACB=90°,∠BAC=37°

    1. (1) 如图2,若AM⊥AB,求点M到地平面BC的距离;
    2. (2) 如图3,当液压杆DE伸长时,此时点M比(1)中的点M到地平面BC的距离升高了21cm,求∠MAB的度数.(参考数据:sin37°≈0.6,cos37°≈0.8,sin45°≈0.7)
  • 21. (2021九上·抚州期末) 如图,甲地、乙地分别是馨雨和馨望两家的自留地,他们两家都用来种西瓜,两块地的四周都是宽度相同的田埂,甲地的面积是240m2

    1. (1) 若馨望家的地比馨雨家的地多了50%,则馨望家地的面积是m2
    2. (2) 在(1)的条件下,求田埂的宽度.
    3. (3) 若馨雨家今年收获了800斤西瓜,种西瓜的成本是0.5元/斤,若以2元/斤进行销售,每天可销售40斤西瓜,经调查发现:每斤西瓜降价0.1元,每天就可多销售10斤西瓜,为了每天获利90元,且售价不得低于1.5元/斤,问售完所有的西瓜,馨雨家能赚多少元?
  • 22. (2021九上·抚州期末) 如图,反比例函数y=(x>0)的图象上的A点与反比例函数y=(x<0)的图象上的B点关于原点O对应(AB经过原点O),且OB=2OA,我们称反比例函数y=(x<0)是反比例函数y=(x>0)的“位似反比例函数”,其中O为位似中心.

    1. (1) 反比例函数y=(x<0)反比例函数y=(x>0)的“位似反比例函数”;(填“是”或“不是”)
    2. (2) 若反比例函数y=(x>0)的图象过点A(1,4).

      ①则m的值为

      ②若A2022在反比例函数y=(x>0)的图象上,对应点B2022在“位似反比例函数”y=(x<0)的图象上,求证:BB2022=2AA2022

    3. (3) 在(2)的条件下,在x轴的正半轴上是否存在一点P,使△ABP为直角三角形,若存在,求出P点的坐标.
  • 23. (2021九上·抚州期末)              

    1. (1) 问题探究:在图1和图2中,ABCD,AD⊥BC于点O.

      ①如图1,若点O是BC的中点,AD=6,BC=8,则AD2,BC2,(AB+CD)2

      ②如图2,AO:DO=1:3,AO=3,BO=4,则AD2,BC2,(AB+CD)2

    2. (2) 请你观察(1)中的计算结果,猜想AD2 , BC2 , (AB+CD)2三者之间的关系. 
    3. (3) 归纳证明:

      请利用图2证明你发现的关系式;

    4. (4) 应用结论:

      如图3,在矩形ABCD中,E,F两点均在AD边上,BE⊥CF交于G点,EF:BE=1:4,CF=3,BC=4.求证:CG=CD;

    5. (5) 拓展应用:

      如图4,已知BD为△ABC的中线,CE⊥BD交AB于点E,交BD于点F,AE=5,BD=10,EC=15,求BC的长.

微信扫码预览、分享更方便

试卷信息