实践探究活动记录表 |
||
活动内容 测量湖边A、B两处的距离 |
||
成员 组长:××× 组员:×××××××××××× |
||
测量工具 测角仪,皮尺等 |
||
测量示意图 |
|
说明:因为湖边A、B两处的距离无法直接测量,数据勘测组在湖边找了一处位置C.可测量C处到A、B两处的距离.通过测角仪可测得的度数. |
测量数据 |
角的度数 |
|
边的长度 |
米 |
|
米 |
数据处理组得到上面数据以后做了认真分析.他们发现不需要勘测组的全部数据就可以计算出A、B之间的距离.于是数据处理组写出了以下过程,请补全内容.
已知:如图,在中, . ____.(从记录表中再选一个条件填入横线)
求:线段的长.(为减小结果的误差,若有需要,取 , 取 , 取进行计算,最后结果保留整数.)
如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据: , , )
如图1,后山一侧有三段相对平直的山坡 , 山的高度即为三段坡面的铅直高度之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.
如图2,同学们将两根直杆的一端放在坡面起始端A处,直杆沿坡面方向放置,在直杆另一端N用细线系小重物G,当直杆与铅垂线重合时,测得两杆夹角的度数,由此可得山坡AB坡角的度数.请直接写出之间的数量关系.
同学们测得山坡的坡长依次为40米,50米,40米,坡角依次为;为求 , 小熠同学在作业本上画了一个含角的(如图3),量得 . 求山高 . ( , 结果精确到1米)
由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.
如图4,5,在学校操场上,将直杆NP置于的顶端,当与铅垂线重合时,转动直杆 , 使点N,P,D共线,测得的度数,从而得到山顶仰角 , 向后山方向前进40米,采用相同方式,测得山顶仰角;画一个含的直角三角形,量得该角对边和另一直角边分别为厘米,厘米,再画一个含的直角三角形,量得该角对边和另一直角边分别为厘米,厘米.已知杆高MN为米,求山高 . (结果用不含的字母表示)