当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省长春市二道区2022-2023学年七年级下学期期末数学...

更新时间:2023-10-10 浏览次数:61 类型:期末考试
一、选择题(本大题共8道小题,每小题3分,共24分)
二、填空题(本大题共6道小题,每小题3分,共18分)
三、解答题(本大题共10小题,共78分)
  • 17. (2023七下·二道期末) 下面是张莉同学解不等式的过程,请认真阅读并完成相应任务.

    解不等式:

    去分母,得24-(x-7)>8x+4.

    1. (1) 任务一:“去分母”这一步的变形依据是____(填“A”或“B”).
      A . 不等式两边乘(或除以)同一个正数,不等号的方向不变. B . 不等式两边乘(或除以)同一个负数,不等号的方向改变.
    2. (2) 任务二:请完成上述解不等式的余下步骤,并把解集表示在数轴上.

  • 18. (2023七下·二道期末) 已知一个多边形的内角和比它的外角和的3倍多
    1. (1) 求这个多边形是几边形;
    2. (2) 如果从这个多边形的一个顶点引出对角线,最多可以引条对角线.
  • 19. (2023七下·二道期末) 如图,在直角三角形ABC中,CD是斜边AB上的高,∠BCD=35°,求:

    1. (1) ∠EBC的度数;(2)∠A的度数.

      对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).

      解:(1)CD⊥AB(已知),

      ∴∠CDB=    ▲        

      ∵∠EBC=∠CDB+∠BCD    ▲        

      ∴∠EBC=    ▲        +35°=    ▲        (等量代换)(2)∵∠EBC=∠A+∠ACB( )

      ∴∠A=∠EBC-∠ACB(等式的性质)

      ∵∠ACB=90°(已知),

      ∴∠A=    ▲        -90°=    ▲        (等量代换).

      你还能用其他方法解决这一问题吗?

  • 20. (2023七下·二道期末) 图①、图②、图③都是4×4的正方形网格,每个小正方形顶点叫做格点.△ABC的顶点A、B、C均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求作图.

    1. (1) 在图①中作△ABC边AB上的高CD.
    2. (2) 在图②中作△ABC边BC上的高AE.
    3. (3) 在图③中作△ABC边AC上的高BF.
  • 21. (2023七下·二道期末) 阅读下列材料,解答下面的问题.

    我们知道每一个二元一次方程都有无数组解,例如……都是方程x+2y=5的解,但在实际生活中我们往往只需求出其正整数解即可.

    我们在求一个二元一次方程的正整数解时通常采用如下方法:

    例:求2x+5y=24这个二元一次方程的正整数解.

    解:由2x+5y=24,得:

    根据x、y为正整数,运用尝试法可以知道

    方程2x+5y=24的正整数解为 或 

    问题:

    1. (1) 若为非负整数,则满足条件的整数x的值有个.
    2. (2) 直接写出满足方程2x+3y=8的正整数解 _
    3. (3) 若要把一根长为32m的绳子截成长为3m和4m两种规格的绳子若干段(两种规格都有),请你在不浪费材料的情况下,通过计算来设计几种不同的截法.
    1. (1) 【探索发现】在一次数学学习活动中,刘华遇到了下面的这个问题:

      如图①,在△ABC中,BP平分∠ABC,CP平分∠ACB,请你判断∠A和∠P间的数量关系并说明理由.

      刘华对这个问题进行了判断并给出了证明过程,下面是部分证明过程,请你补全余下的证明过程.

      解:结论:∠P=_

      理由:∵BP平分∠ABC,CP平分∠ACB,

      ∴∠PBC=∠ABC,∠PCB=∠ACB.

      ∴∠P=180°-∠PBC-∠PCB.

      =180°-(∠ABC+∠ACB)

      =180°-(180°-∠A)

      _

    2. (2) 【模型发展】如图②,点P是△ABC的外角平分线BP与CP的交点,请你判断∠A和∠P间的数量关系并说明理由.
    3. (3) 【解决问题】如图③,在△ABC中,BP平分∠ABC,CP平分∠ACB,点Q是△PBC的外角平分线BQ与CQ的交点.若∠A=68°,则∠Q=_度.
  • 23. (2023七下·二道期末) 某学校七年级甲、乙两班为丰富学生的体育活动购买了一批足球和篮球,足球和篮球的价格不同,如图是两个班级购买的足球和篮球的数量及消费的金额.

    1. (1) 求每个足球和篮球的价格.
    2. (2) 若该校七年级丙班在同一商场购买了同种型号的足球3个、篮球1个,则该班共消费 元.
    3. (3) 若该校八年级在同一商店采购同种型号的足球和篮球共10个,且他们的消费金额不少于460元,则该校八年级至少购买了多少个足球?
  • 24. (2023七下·二道期末) 如图,在长方形ABCD中,AB=6cm,BC=4cm,点P从点A出发,以每秒4cm的速度沿折线AB一BC运动,同时点Q从点C出发,以每秒1.5cm的速度沿射线CB方向运动,当点P到达终点C时,点Q随之停止运动.设点P的运动时间为t(秒).

    1. (1) ①当点P在AB上运动时,BP=cm.(用含t的代数式表示)

      ②当点P在BC上运动时,BP=cm.(用含t的代数式表示)

    2. (2) 当点P运动到BC的中点时,求线段BQ的长.
    3. (3) 当点P与点Q到点B的距离相等时,求t的值.
    4. (4) 当点P在BC上运动时,连结AP、AQ.直接写出△APQ的面积是3cm2时t的值.

微信扫码预览、分享更方便

试卷信息