(1)连接BC,以点B为圆心,以CB的长为半径画弧;(2)连接AC,以点A为圆心,以AC的长为半径画弧,两弧相交于点D;(3)连接CD,且过A,B作直线,则A,B一定在线段CD的垂直平分线上,依据是:
和直线l.
⑴在直线l上找一点P,使点P到边AB, BC的距离相等;
⑵画出△ABC关于直线l对称的图形△A1B1C1;再将△A1B1C1向下平移4个单位长度,画出平移后得到的图形△A2B2C2;
⑶结合轴对称变换和平移变换的有关性质,两个对应图形△ABC和△A2B2C2的对应点所具有的性质是
A.对应点连线互相平行.
B.对应点连线被直线l垂直平分.
C.对应点连线被直线l平分或与直线l重合.
①如图②,当点D在线段BC上移动,判断△BEF的形状并证明;
②当点D在线段BC的延长线上移动,△BEF是什么三角形?请直接写出结论并画出相应的图形.