当前位置: 初中数学 /北师大版(2024) /八年级上册 /第五章 二元一次方程组 /4 应用二元一次方程组——增收节支
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023-2024学年北师大版数学八年级上册5.4应用二元一...

更新时间:2023-11-27 浏览次数:66 类型:同步测试
一、选择题
  • 1. (2023七下·河西期末) 打折前,买商品和商品用了元,买商品和商品用了元.打折后,买商品和商品用了元,则打折比不打折少花( )
    A . B . C . D .
  • 2. (2024七下·西华月考) 我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,…,…,试问甜苦果几个,又问各该几个钱?若设买甜果x个,买苦果y个,列出符合题意的二元一次方程组: . 根据已有信息,题中用“…,…”表示的缺失的条件应为( )
    A . 甜果九个十一文,苦果七个四文钱 B . 甜果七个四文钱,苦果九个十一文 C . 甜果十一个九文,苦果四个七文钱 D . 甜果四个七文钱,苦果十一个九文
  • 3. (2023八上·渝北期中) 某商店将某种碳酸饮料每瓶的价格下调了10%.将某种果汁饮料每瓶的价格上调了5%,已知调价前买这两种饮料各一瓶共花费8元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费19.8元,若设上述碳酸饮料、果汁饮料在调价前每瓶分别为x元和y元,则可列方程组为(  )
    A . B . C . D .
  • 4. (2023七下·长泰期中) 某学校为了增强学生体质,决定让各班去购买跳绳和毽子作为活动器械.七年1班生活委员小亮去购买了跳绳和毽子共5件,已知两种活动器械的单价均为正整数且跳绳的单价比毽子的单价高.在付款时,小亮问是不是30元,但收银员却说一共45元,小亮仔细看了看后发现自己将两种商品的单价记反了,则小亮实际购买情况是(    )
    A . 1根跳绳,4个毽子 B . 3根跳绳,2个毽子 C . 2根跳绳,3个毽子 D . 4根跳绳,1个毽子
  • 5. (2023八上·渠县期末) 某公司上半年生产甲、乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架设甲种型号无人机有x架,乙种型号无人机有y架,根据题意可列出的方程组是(    )
    A . B . C . D .
  • 6. (2021八上·高州期末) 某校开展阅读经典活动,小明3天里阅读的总页数比小颗5天里阅读的总页数少6页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页,若小明、小颖平均每天分别阅读x页、y页,则下列方程组正确的是(    )
    A . B . C . D .
  • 7. (2022八上·江油开学考) 某校学生去看电影,如果每辆汽车坐60人,则空出1辆汽车,如果每辆汽车坐45人,则15人没有座位,那么学生人数和汽车辆数各是多少?(    )
    A . 230人、6辆 B . 240人、5辆 C . 240人、8辆 D . 250人、7辆
  • 8. (2023七下·涟源月考) 在全国足球联赛中,每场比赛都要分出胜负,已知某足球队连续10场保持不败,共得22分,根据比赛规则:胜一场得3分,平一场得1分,求该足球队胜了多少场?平了多少场?设该足球队胜的场数是x,平的场数是y,根据题意可得方程组为(   )
    A . B . C . D .
  • 9. (2021八上·未央期末) 某商场新购进一种服装,每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,则调价前上衣的单价是(   )
    A . 200元 B . 480元 C . 600元 D . 800元
  • 10. (2021八上·高台期末) 4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组(  )
    A .    B . C . D .
二、填空题
  • 11. (2023七下·北京市期末) 某化工厂与两地有公路、铁路相连.这家工厂从地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到地.已知公路运价为1.5元 , 铁路运价为1.2元 , 且这两次运输共支出公路运费15000元,铁路运费97200元.设购买原料,制成产品.则从A地到这家化工厂原料运输费是,这批产品的销售款比原料费与运输费的元.

  • 12. (2022八上·潼南期中) 某公司定点到“好客超市”采购A、B两种饮料,8月份采购24件A饮料和32件B饮料共花费了3480元,9月份采购32件A饮料和24件B饮料共花费3240元,10月份该超市A饮料和B饮料中有部分因为保质期临近而打六折促销,公司根据实际需要购买了原价或打折的A饮料和B饮料,共花了2850元,其中打折的A饮料件数是10月份购买所有A饮料和B饮料总件数的 , 该公司10月份一共购买了A、B饮料 件.
  • 13. (2021八上·顺德期末) 小明和小丽同时到一家水果店买水果.小明买苹果和雪梨,共花了33元;小丽买苹果和雪梨,共花了36元.设苹果每千克元,雪梨每千克元,请根据题意,列出方程组:
  • 14. (2020八上·鄄城期末) 如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买1束鲜花和1个礼盒的总价为元.

  • 15. (2019八上·黄冈月考) 在一年一度的“药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,为了求解x和y的值,你认为小明应该列出的方程组是:.
三、综合题
  • 16. (2022八上·丹东期末) 2022年“卡塔尔世界杯”吉祥物“”是根据阿拉伯地区的民族特色设定出的一个卡通人物,受到了全世界朋友的喜爱,某商店分两次购进了吉祥物“”的徽章和挂件,统计情况如下表:

    进货批次

    徽章/个

    挂件/个

    总费用/元

    第一次

    200

    100

    13000

    第二次

    100

    300

    19000

    1. (1) 求每个徽章和每个挂件的进价分别是多少元?
    2. (2) 当该商店购进徽章和挂件共500个,请直接写出购进的总费用W与徽章的个数n之间的函数关系式;并求当购进的总费用W为23000元时,购进徽章和挂件各多少个?
  • 17. (2022八上·沈阳期末) 某超市计划购进一批玩具,有甲、乙两种玩具可供选择,已知1件甲种玩具与1件乙种玩具的进价之和为57元,2件甲种玩具与3件乙种玩具的进价之和为141元.
    1. (1) 甲、乙两种玩具每件的进价分别是多少元?
    2. (2) 现在购进甲种玩具有优惠,优惠方案是:若购进甲种玩具超过20件,则超出部分可以享受7折优惠.设购进a(a>20)件甲种玩具需要花费w元,请求出w与a的函数关系式.
  • 18. (2022八上·青岛期末) 抗疫期间,社会各界众志成城,某乳品公司向疫区捐献牛奶,若由铁路运输每千克需运费0.58元;若由公路运输每千克需运费0.28元,并且还需其他费用600元.
    1. (1) 若该公司运输第一批牛奶共计8000千克,分别由铁路和公路运输,费用共计4340元,请问铁路和公路各运输了多少千克牛奶?
    2. (2) 设该公司运输第二批牛奶x(千克),选择铁路运输时,所需费用为(元),选择公路运输时,所需费用(元),请分别写出(元),(元)与x(千克)之间的关系式;
    3. (3) 运输第二批牛奶时公司决定只选择一种运输方式,请问随着x(千克)的变化,怎样选择运输方式所需费用较少?
  • 19. (2023八上·龙岗期末) 为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,1只A型节能灯和3只B型节能灯共需26元.
    1. (1) 求1只A型节能灯和1只B型节能灯的售价各是多少元.
    2. (2) 学校准备购买这两种型号的节能灯共200只,要求购买A型号的节能灯a只,记购买两种型号的节能灯的总费用为W元.

      ①求W与a的函数关系式;

      ②当时,求购买两种型号的节能灯的总费用是多少?

  • 20. (2023八下·五华期末) 某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗30棵,B种树苗15棵,共花费1350元;第二次购进A种树苗24棵,B种树苗10棵,共花费1060元.(两次购进的A,B两种树苗各自的单价均不变)
    1. (1) A,B两种树苗每棵的价格分别是多少元?
    2. (2) 若购买A,B两种树苗共42棵,总费用为W元,购买A种树苗t棵,B种树苗的数量不超过A种树苗数量的2倍.求W与t的函数关系式.请设计出最省钱的购买方案,并求出此方案的总费用.

微信扫码预览、分享更方便

试卷信息