当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广西南宁四十七中2023-2024学年九年级上学期期中数学试...

更新时间:2024-03-22 浏览次数:23 类型:期中考试
一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)
二、填空题(本大题共6小题,每小题2分,共12分.)
三、解答题(本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤)
  • 20. (2023九上·南宁期中) 先化简,再求值:(2a+b)2-2a(2a-b),其中a=-3,b=-1.
  • 21. (2023九上·南宁期中) 如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).

     

    1. (1) 按下列要求作图:

      ①将△ABC向左平移4个单位,再向上平移1个单位得到△A1B1C1

      ②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B1C2

    2. (2) 求点C1在旋转过程中所经过的路径长.
  • 22. (2023九上·南宁期中)  为了提高同学们的学习积极性,某校九年级举行了“数学知识竞赛”活动,并随机抽查了部分参赛同学的成绩,整理并制作图表如:

    分数段

    频数

    频率

    60≤x<70

    30

    0.1

    70≤x<80

    90

    n

    80≤x<90

    m

    0.4

    90≤x<100

    60

    0.2

    请根据图表提供的信息,解答下列问题:

    1. (1) 请求出:m=,n=,抽查的总人数为 人;
    2. (2) 抽查成绩的中位数应落在 分数段内;
    3. (3) 若满分人数有甲、乙、丙、丁四人,现决定从这四名同学中任选两名参加市里的决赛,求恰好选中甲、乙两位同学的概率.(用树状图或列表法解答)
  • 23. (2023九上·南宁期中) 如图,AB为⊙O的直径,CD为⊙O上的两个点, ,连接AD , 过点DDEACAC的延长线于点E

    1. (1) 求证:DE是⊙O的切线.
    2. (2) 若直径AB=6,求AD的长.
  • 24. (2023九上·南宁期中)  某宾馆有50个房间可供游客居住,当每个房间每天的定价为180元时,房间会全部住满,当每个房间每天的定价增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间的定价增加x元(x为10的整数倍),此时入住的房间数为y间,宾馆每天的利润为w元.
    1. (1) 直接写出y(间)与x(元)之间的函数关系;
    2. (2) 如何定价才能使宾馆每天的利润w(元)最大?
    3. (3) 若宾馆每天的利润为10800元,则每个房间每天的定价为多少元?
  • 25. (2023九上·南宁期中)  阅读理解:已知三角形的中线具有等分三角形面积的性质,即如图①,AD是△ABC中BC边上的中线,则S△ABD=S△ACDS△ABC , 理由:∵BD=CD,∴S△ABDBD,AH=CD·AH= S△ACD=S△ABC ,即:等底同高的三角形面积相等.

    回答下列问题:

    1. (1) 如图②,点A、B、C分别是CE、AF、BD的中点,且S△ABC=2,则图②中阴影部分的面积为
    2. (2) 如图③,已知四边形ABCD的面积是m,E、F、G、H分别是AB、BC、CD、DA的中点,点P是四边形ABCD内一点,求出图中阴影部分的面积.
  • 26. (2023九上·南宁期中)  如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.

     

    1. (1) 求抛物线的解析式;
    2. (2) 当点P在直线OA上方时,求线段PC的最大值;
    3. (3) 过点A作AD⊥x轴于点D,在抛物线上是否存在点P,使得以P、A、C、D四点为顶点的四边形是平行四边形?若存在,求m的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息