一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置,填涂正确记4分,不涂、错涂或多涂记0分.
-
-
-
-
4.
(2023九上·碑林月考)
杨辉是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家.他与秦九韶、李冶、朱世杰并称“宋元数学四大家”.他所著《田亩比类乘除算法》(1275年)提出了这样一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步.”若设阔为
x步,则列方程可得( )
-
-
-
A . 2024
B . 2023
C . 2022
D . 2021
-
-
-
二、 填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.
-
-
-
-
-
-
16.
(2023九上·仪陇期中)
如图,在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3ER%3C%2Fmtext%3E%3Cmtext%3Et%3C%2Fmtext%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
中,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
, 点
D为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
的中点,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%88%A0%3C%2Fmo%3E%3Cmi%3EG%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EH%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%88%A0%3C%2Fmo%3E%3Cmi%3EG%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EH%3C%2Fmi%3E%3C%2Fmath%3E)
绕点
D旋转,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EG%3C%2Fmi%3E%3Cmtext%3E%E3%80%81%3C%2Fmtext%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EH%3C%2Fmi%3E%3C%2Fmath%3E)
分别与边
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmtext%3E++%EF%BC%8C+%3C%2Fmtext%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
交于
E、
F两点.下列结论:①
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmtext%3E%3D%3C%2Fmtext%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
, ②
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
, ③
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3ES%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E%E5%9B%9B%3C%2Fmtext%3E%3Cmtext%3E%E8%BE%B9%3C%2Fmtext%3E%3Cmtext%3E%E5%BD%A2%3C%2Fmtext%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3ES%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E%CE%94%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, ④
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsqrt%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsqrt%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
, ⑤
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
始终为等腰直角三角形.其中正确的结论有
.(填写序号)
![](//tikupic.21cnjy.com/2023/12/19/04/da/04da367388064a62a05ca9c81bc52827_130x81.png)
三、 解答题(本大题共9个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤
-
-
(1)
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
;
-
(2)
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
.
-
18.
(2023九上·仪陇期中)
如图,在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3ER%3C%2Fmtext%3E%3Cmtext%3Et%3C%2Fmtext%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
中,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%88%A0%3C%2Fmo%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3C%2Fmath%3E)
, 将
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
绕着点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
逆时针旋转得到
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
, 点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
的对应点分别为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
,
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
, 点
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3C%2Fmath%3E)
落在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmath%3E)
上,连接
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
.
![](//tikupic.21cnjy.com/2023/12/19/9f/af/9faf95ea5b9a6b12a0f94b74275a2cef_137x125.png)
-
(1)
若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%88%A0%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmn%3E6%3C%2Fmn%3E%3Cmo%3E%C2%B0%3C%2Fmo%3E%3C%2Fmath%3E)
, 求
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%88%A0%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E)
的度数;
-
-
19.
(2023九上·仪陇期中)
如图,某中学要在教学楼后面的空地上用20米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙(外墙足够长),其余三边用竹篱笆.设矩形的边
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
的长为
x米,矩形
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E)
面积为
y平方米.
![](//tikupic.21cnjy.com/2023/12/19/94/38/94383c8fdafa649ca4f67e3e941cdccc_248x109.png)
-
(1)
求y与x的函数关系式,并求自变量x的取值范围;
-
(2)
生物园的面积能否达到55平方米?请说明理由.
-
-
-
(2)
若方程的两个实数根
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmtext%3E++%EF%BC%8C+%3C%2Fmtext%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, 满足
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmath%3E)
, 求
k的值.
-
21.
(2023九上·仪陇期中)
阅读思考,并解答下列问题:
在2022年北京冬季奥林匹克运动会上,一个滑雪者从山坡滑下,为了得出滑行距离s(单位:
)与滑行时间t(单位:
)之间的关系式,测得一组数据(如下表).
-
(1)
为观察
s与
t之间的关系,建立坐标系,以
t为横坐标,
s为纵坐标.如图,请描出表中数据对应的5个点,并用平滑的曲线连接它们;
-
(2)
观察图象,可以看出这条曲线像是我们学过的哪种函数的图象的一部分?请你推测滑行距离与滑行时间的关系,并用该函数模型来近似地表示s与t之间的关系;
-
(3)
如果该滑雪者滑行了
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmn%3E7%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmtext%3Em%3C%2Fmtext%3E%3C%2Fmath%3E)
, 请你用(2)中的函数模型推测他滑行的时间是多少秒? (参考数据:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E8%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E6%3C%2Fmn%3E%3C%2Fmath%3E)
)
-
22.
(2023九上·仪陇期中)
配方法是数学中重要的一种思想方法,利用配方法可求一元二次方程的根,也可以求二次函数的顶点坐标等,所谓配方法是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,其实这种方法还经常被用到代数式的变形中,并结合非负数的意义解决某些问题.我们规定:一个整数能表示成
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
(
a ,
b是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,理由:因为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmath%3E)
, 所以5是“完美数”.
-
(1)
【解决问题】:
下列各数中,“完美数”有 (只填序号);
①10 ②24 ③34 ④60
-
(2)
【探究问题】:
若
可配方成
(m , n为常数),则
的值为;
-
(3)
已知
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3ES%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmsup%3E%3Cmrow%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmath%3E)
(
a ,
b是整数,
k是常数),要使
S为“完美数”,试求出符合条件的一个
k值,并说明理由;
-
(4)
【拓展应用】:
已知实数x , y均满足
, 求代数式
的最小值.
-
23.
(2023九上·仪陇期中)
某水果商场经销一种高档水果,原价每千克80元,若每千克盈利10元,则每天可售出400千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E0%3C%2Fmn%3E%3Cmn%3E.%3C%2Fmn%3E%3Cmn%3E5%3C%2Fmn%3E%3C%2Fmath%3E)
元,日销售量将减少10千克.
-
(1)
在原价的基础上,连续两次降价后每千克
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E5%3C%2Fmn%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E.%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmath%3E)
元,若每次下降的百分率相同,求每次下降的百分率;
-
(2)
现该商场要保证每天盈利
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmn%3E8%3C%2Fmn%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmath%3E)
元,且要尽快减少库存,那么每千克应涨价多少元?
-
(3)
若使商场每天的盈利达到最大,则应涨价多少元?此时每天的最大盈利是多少?
-
24.
(2023九上·仪陇期中)
探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.
如下图,将两个完全相同的三角形纸片
和
重合放置,其中
. 若固定
, 将
绕点C旋转.
-
(1)
当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
绕点
C旋转到点
D恰好落在
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmath%3E)
边上时,如下图.
①当
时,求此时旋转角的大小;
②当
时,直接写出此时旋转角的大小(用含α的式子表示).
-
(2)
当
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
绕点
C旋转到如下图所示的位置时,小组长猜想:
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的面积与
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmath%3E)
的面积相等,试判断小组长的猜想是否正确,若正确,请你证明小组长的猜想.若不正确,请说明理由.
-
-
-
(2)
在抛物线的对称轴上是否存在点
Q , 使
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EQ%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3EQ%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%7C%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
最大?若存在,求出点
Q的坐标;若不存在,请说明理由;
![](//tikupic.21cnjy.com/2023/12/19/93/0b/930b19992141712124eb96210a8e9348_181x169.png)
-
(3)
连接
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3EP%3C%2Fmi%3E%3Cmtext%3E++%EF%BC%8C+%3C%2Fmtext%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmath%3E)
, 若
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3ES%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3EP%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmn%3E9%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E4%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3Cmsub%3E%3Cmrow%3E%3Cmi%3ES%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmtext%3E%E2%96%B3%3C%2Fmtext%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EO%3C%2Fmi%3E%3Cmi%3EC%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3C%2Fmath%3E)
, 求点
P的坐标.