题库组卷系统-专注K12在线组卷服务
充值中心
开通VIP会员
特惠下载包
激活权益
帮助中心
登录
注册
试题
试卷
试题
在线咨询
当前:
高中数学
小学
语文
数学
英语
科学
道德与法治
初中
语文
数学
英语
科学
物理
化学
历史
道德与法治
地理
生物学
信息技术
历史与社会(人文地理)
社会法治
高中
语文
数学
英语
物理
化学
历史
思想政治
地理
生物学
信息技术
通用技术
首页
手动组卷
章节同步选题
知识点选题
智能组卷
章节智能组卷
知识点智能组卷
细目表组卷
试卷库
同步专区
备考专区
高考专区
智能教辅
在线测评
测
当前位置:
高中数学
/
备考专区
试卷结构:
课后作业
日常测验
标准考试
|
显示答案解析
|
全部加入试题篮
|
平行组卷
试卷细目表
发布测评
在线自测
试卷分析
收藏试卷
试卷分享
下载试卷
下载答题卡
广东省江门市鹤山市重点中学2023-2024学年高二上学期数...
下载试题
平行组卷
收藏试卷
在线测评
发布测评
在线自测
答题卡下载
更新时间:2024-03-10
浏览次数:20
类型:月考试卷
试卷属性
副标题:
无
*注意事项:
无
广东省江门市鹤山市重点中学2023-2024学年高二上学期数...
更新时间:2024-03-10
浏览次数:20
类型:月考试卷
考试时间:
分钟
满分:
分
姓名:
____________
班级:
____________
学号:
____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
一、单项选择题:本大题共8题,每题5分,共40分.
1.
(2023高二上·鹤山月考)
已知向量
, 且
与
共线,则
( )
A .
1
B .
2
C .
-1
D .
-2
答案解析
收藏
纠错
+ 选题
2.
(2023高二上·鹤山月考)
双曲线
的渐近线方程为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
3.
(2023高二上·鹤山月考)
设
是等差数列
的前
项和,若
, 则
( )
A .
36
B .
45
C .
54
D .
63
答案解析
收藏
纠错
+ 选题
4.
(2023高二上·鹤山月考)
圆
与圆
的公切线条数为( )
A .
1
B .
2
C .
3
D .
4
答案解析
收藏
纠错
+ 选题
5.
(2023高二上·鹤山月考)
点
关于直线
的对称点
的坐标为( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
6.
(2023高二上·鹤山月考)
设等差数列
,
的前
项和分别为
,
, 若
, 则
( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
7.
(2024高一下·新会期末)
南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔
时,相应水面的面积为
;水位为海拔
时,相应水面的面积为
, 将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔
上升到
时,增加的水量约为(
)( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
8.
(2023高二上·鹤山月考)
已知椭圆
上存在点
, 使得
, 其中
,
分别为椭圆的左、右焦点,则该椭圆的离心率的取值范围是( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
二、多项选择题:本大题共4题,每题5分,共20分.
9.
(2023高二上·鹤山月考)
已知等差数列
的前
项和为
, 公差
.若
, 则( )
A .
B .
C .
D .
答案解析
收藏
纠错
+ 选题
10.
(2023高二上·鹤山月考)
如图,在正方体
中,
为
的中点,则( )
A .
平面
B .
C .
若正方体的棱长为
, 则点
到平面
的距离为
D .
直线
与平面
所成角的正弦值为
答案解析
收藏
纠错
+ 选题
11.
(2023高二上·鹤山月考)
已知曲线
上任意一点到直线
的距离比它到点
的距离大
, 则下列结论正确的是( )
A .
曲线
的方程为
B .
若曲线
上的一点
到点
的距离为
, 则点
的纵坐标是4
C .
已知曲线
上的两点
,
到点
的距离之和为10,则线段
的中点横坐标是
D .
已知
,
是曲线
上的动点,则
的最小值为5
答案解析
收藏
纠错
+ 选题
12.
(2024高二上·金东期中)
已知点
是圆
上一动点,则下列说法正确的是( )
A .
的最小值是0
B .
的最大值为1
C .
的最大值为
D .
的最小值为
答案解析
收藏
纠错
+ 选题
三、填空题:本大题共4题,每题5分,共20分.
13.
(2024高二上·成都期中)
若向量
,
, 则
.
答案解析
收藏
纠错
+ 选题
14.
(2023高二上·鹤山月考)
若两条平行直线
与
之间的距离是
, 则
.
答案解析
收藏
纠错
+ 选题
15.
(2023高二上·鹤山月考)
已知数列
的前
项和
, 则数列
的通项公式为
.
答案解析
收藏
纠错
+ 选题
16.
(2023高二上·鹤山月考)
已知正
边长为1,将
绕
旋转至
, 使得平面
平面
, 则三棱锥
的外接球表面积为
.
答案解析
收藏
纠错
+ 选题
四、解答题:本大题共6题,第17题10分,18至22题每题12分,共70分.
17.
(2023高二上·鹤山月考)
已知
的顶点
.
(1) 求
边上的中线所在直线的方程;
(2) 求经过点
, 且在
轴上的截距和
轴上的截距相等的直线的方程.
答案解析
收藏
纠错
+ 选题
18.
(2023高二上·鹤山月考)
如图,在平行六面体
中,以顶点
A
为端点的三条棱长度都为2,且两两夹角为
.
(1) 求
的长;
(2) 求
与
所成角的余弦值.
答案解析
收藏
纠错
+ 选题
19.
(2023高二上·鹤山月考)
在平面直角坐标系
内,动点
与定点
的距离和它到定直线
的距离的比是
.
(1) 求动点
的轨迹方程.
(2) 若
为动点
的轨迹上一点,且
, 求三角形
的面积.
答案解析
收藏
纠错
+ 选题
20.
(2023高二上·成都月考)
已知等差数列
, 前
项和为
, 又
.
(1) 求数列
的通项公式
;
(2) 设
, 求数列
的前
项和
.
答案解析
收藏
纠错
+ 选题
21.
(2023高二上·鹤山月考)
如图,在四棱锥
中,底面
为矩形,
,
, 点
为棱
上的点,且
.
(1) 证明:
;
(2) 若
, 求直线
与平面
所成角的正弦值.
答案解析
收藏
纠错
+ 选题
22.
(2023高二上·鹤山月考)
已知椭圆
的左、右顶点分别为
, 上、下顶点分别为
, 四边形
的周长为
.
(1) 求椭圆
的方程;
(2) 设点
为椭圆
的左焦点,点
, 过点
作
的垂线交椭圆
于点
, 连接
与
交于点
. 试判断
是否为定值?若是,求出这个定值;若不是,说明理由.
答案解析
收藏
纠错
+ 选题
微信扫码预览、分享更方便
详情
试题分析
(总分:
0
)
总体分析
题量分析
难度分析
知识点分析
试卷信息