当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2013年高考理数真题试卷(上海卷)

更新时间:2021-05-20 浏览次数:804 类型:高考真卷
一、填空题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.
二、选择题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.
  • 15. (2013·上海理) 设常数a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,则a的取值范围为(   )
    A . (﹣∞,2) B . (﹣∞,2] C . (2,+∞) D . [2,+∞)
  • 16. (2013·上海理) 钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的(   )
    A . 充分条件 B . 必要条件 C . 充分必要条件 D . 既非充分又非必要条件
  • 17. (2013·上海理) 在数列(an)中,an=2n﹣1,若一个7行12列的矩阵的第i行第j列的元素cij=ai•aj+ai+aj(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为(   )
    A . 18 B . 28 C . 48 D . 63
  • 18. (2013·上海理) 在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为 ;以D为起点,其余顶点为终点的向量分别为 .若m、M分别为( + + )•( + + )的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},则m、M满足(    )
    A . m=0,M>0 B . m<0,M>0 C . m<0,M=0 D . m<0,M<0
三、解答题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.
  • 19. (2013·上海理) 如图,在长方体ABCD﹣A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

  • 20. (2013·上海理) 甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣ )元.
    1. (1) 要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
    2. (2) 要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
  • 21. (2013·上海理) 已知函数f(x)=2sin(ωx),其中常数ω>0
    1. (1) 若y=f(x)在[﹣ ]上单调递增,求ω的取值范围;
    2. (2) 令ω=2,将函数y=f(x)的图象向左平移 个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R,且a<b)满足:y=g(x)在[a,b]上至少含有30个零点.在所有满足上述条件的[a,b]中,求b﹣a的最小值.
  • 22. (2013·上海理) 如图,已知双曲线C1 ,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1 , C2都有公共点,则称P为“C1﹣C2型点”

    1. (1) 在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
    2. (2) 设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;
    3. (3) 求证:圆x2+y2= 内的点都不是“C1﹣C2型点”
  • 23. (2013·上海理) 给定常数c>0,定义函数f(x)=2|x+c+4|﹣|x+c|.数列a1 , a2 , a3 , …满足an+1=f(an),n∈N*

    1. (1) 若a1=﹣c﹣2,求a2及a3

    2. (2) 求证:对任意n∈N* , an+1﹣an≥c;

    3. (3) 是否存在a1 , 使得a1 , a2 , …,an , …成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.

微信扫码预览、分享更方便

试卷信息