当前位置: 初中数学 /湘教版(2024) /七年级下册 /第3章 因式分解 /本章复习与测试
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023-2024学年初中数学湘教版七年级下学期 第3章 因...

更新时间:2024-03-25 浏览次数:51 类型:单元试卷
一、选择题
二、填空题
三、计算题
四、解答题
  • 18. 现有三个多项式:  请你选择两个进行加法运算,并把结果分解因式.
  • 19. (2024八上·德惠期末) 下面是某同学对多项式进行因式分解的过程.

    解:设

    原式第一步

    第二步

    第三步

    第四步

    1. (1) 该同学第二步到第三步运用了因式分解的____;
      A . 提取公因式 B . 平方差公式 C . 两数和的完全平方公式 D . 两数差的完全平方公式
    2. (2) 该同学因式分解的结果是否彻底?若不彻底,请直接写出因式分解的最后结果;
    3. (3) 请你模仿以上方法尝试对多项式进行因式分解.
  • 20. (2024八上·临洮月考)  已知A=4m(2m2﹣1)+4m,B=8m.
    1. (1) 化简整式A,并求m=﹣1时A的值;
    2. (2) 若C=A﹣B.

      ①将C因式分解;

      ②若m为整数,直接写出整式C能否被16整除.

五、实践探究题
  • 21. 阅读材料:

    因为 , 这说明多项式有一个因式为x1,我们把x=1代入此多项式发现 x=1能使多项式的值为0.

    解决问题:

    1. (1) 若x3是多项式的一个因式,求 k 的值.
    2. (2) x-3和x-4时多项式x3+mx2+12x+n的两个因式,试求m、n的值.
    3. (3) 在(2)的条件下,把多项式分解因式.
  • 22. 教材中的探究启发我们:通过用不同的方法计算同一图形的面积,可以探求出计算多项式乘法或分解因式的新途径.例如,选取图 1中的正方形、长方形硬纸片共 6 块,拼出一个如图2所示的长方形,计算它的面积可以得到相应的等式: 或 .

    1. (1) 请根据图 3写出代数恒等式,并根据所写恒等式计算.
    2. (2) 若 求 x +y+z的值.
    3. (3) 试借助图1 的硬纸片,利用拼图的方法把二次多项式 分解因式,并把所拼的图形画在虚线方框内.

六、综合题
  • 23. (2023八下·揭东期末) 在学习对复杂多项式进行因式分解时,老师示范了如下例题:

    例:因式分解:

    解:设

    原式第一步

             第二步

             第三步

             第四步

    完成下列任务:

    1. (1) 例题中第二步到第三步运用了因式分解的;(填序号)

      ①提取公因式;②平方差公式;③两数和的完全平方公式;④两数差的完全平方公式;

    2. (2) 请你模仿以上例题分解因式:
  • 24. (2023七下·曲阳期末) 常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2-2xy+y2-16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2-2xy+y2-16=(x-y)2一16=(x-y+4)(x-y-4)

    这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:

    1. (1) 9a2+4b2-25m2-n2+12ab+10mn;
    2. (2) 已知a、b、c分别是△ABC三边的长且2a2+b2+c2-2a(b+c)=0,请判断△ABC的形状,并说明理由.

微信扫码预览、分享更方便

试卷信息