当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省七校2025届高三上学期第二次联考数学试卷

更新时间:2024-12-31 浏览次数:3 类型:月考试卷
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)
二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)
  • 9. (2024高三上·广东月考) 现安排甲、乙、丙、丁、戊这5名同学参加志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,且每人只安排一个工作,则下列说法正确的是(       )
    A . 不同安排方案的种数为 B . 若每项工作至少有1人参加,则不同安排方案的种数为 C . 若司机工作不安排,其余三项工作至少有1人参加,则不同安排方案的种数为 D . 若每项工作至少有1人参加,甲不能从事司机工作,则不同安排方案的种数为
  • 10. (2024高三上·广东月考) 如图,在棱长为4的正方体中,E,F分别是棱的中点,P是正方形内的动点,则下列结论正确的是(       )

    A . 平面 , 则点P的轨迹长度为 B . 平面 , 则三棱锥的体积为定值 C . , 则点P的轨迹长度为 D . 若P是棱的中点,则三棱锥的外接球的表面积是
  • 11. (2024高三上·广东月考) 已知抛物线的焦点为F,A,B,P为抛物线C上的点, , 若抛物线C在点A,B处的切线的斜率分别为 , 且两切线交于点M.N为抛物线C的准线与y轴的交点.则以下结论正确的是(       )
    A . , 则 B . 直线PN的倾斜角 C . , 则直线AB的方程为 D . 的最小值为2
三、填空题(本大题共3小题,每小题5分,共15分)
四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)
  • 15. (2024高三上·广东月考) 中,角A,B,C的对边分别为a,b,c,的面积为 , 且
    1. (1) 求角
    2. (2) 若为锐角三角形,且 , 求a的取值范围.
  • 16. (2024高三上·广东月考) 在如图所示的实验装置中,两个正方形框架的边长都是1,且他们所在的平面互相垂直,活动弹子分别在正方形对角线上移动,且的长度保持相等,及

    1. (1) 求的长;
    2. (2) 为何值时,的长最小,最小值是多少?
    3. (3) 当的长最小时,求平面与平面的夹角的余弦值.
  • 17. (2024高三上·广东月考) 传球是排球运动中最基本、最重要的一项技术.传球是由准备姿势、迎球、击球、手型、用力5个动作部分组成.其中较难掌握的是触球时的手型,因为触球时手型正确与否直接影响手控制球的能力和传球的准确性,对初学者来说掌握了正确手型才能保证正确击球点和较好的运用手指,手腕的弹力.从小张、小胡、小郭、小李、小陈这5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出.
    1. (1) 记小胡、小李、小陈这三人中被抽到的人数为随机变量 , 求的分布列;
    2. (2) 若刚好抽到小胡、小李、小陈三个人相互做传球训练,且第1次由小胡将球传出,记次传球后球在小胡手中的概率为

      ①直接写出的值;

      ②求的关系式 , 并求

  • 18. (2024高三上·广东月考) 已知函数
    1. (1) 求函数的值域;
    2. (2) 若不等式上恒成立,求的取值范围;
    3. (3) 当时,函数的值域为 , 求正数的取值范围.
  • 19. (2024高三上·广东月考) 已知双曲线的实轴长为4,渐近线方程为.
    1. (1) 求双曲线的标准方程;
    2. (2) 双曲线的左、右顶点分别为 , 过点作与轴不重合的直线交于两点,直线交于点S,直线交于点.

      (i)设直线的斜率为 , 直线的斜率为 , 若 , 求的值;

      (ii)求的面积的取值范围.

微信扫码预览、分享更方便

试卷信息